

PART : CHEMISTRY

SECTION – 1 : (Maximum Marks : 80)

Straight Objective Type

This section contains **20 multiple choice questions.** Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which **Only One** is correct.

1. Which of the following reactions are possible ?

Ans.

Sol. Vinyl halides and aryl halides do not give Friedel craft's reaction.

2. A and B are in the given reaction ?

- **3.** The correct statement about gluconic acid is
 - (1) It is prepared by oxidation of glucose with HNO3
 - (2) It is obtained by partial oxidation of glucose
 - (3) It is dicarboxylic acid
 - (4) It forms hemiactal or acetal
- Ans. (2)

Sol. Gluconic acid $\begin{bmatrix} CH_2-CH-CH-CH-CH-COOH \\ I & I \\ OH & OH & OH & OH \end{bmatrix}$ is obtained by partial oxidation of glucose by Tollen's reagent or Fehling solution or Br₂,H₂O. Gluconic acid can not form hemiacetal or acetal

4. Stability order of following alkoxide ions is

Ans.

- Sol. When negative charge is delocalised with electron withdrawing group like (NO₂) then stability increases.
 - (A) Negative charge is delocalised with NO2 group
 - (B) Negative charge is delocalised with carbon of alkene
 - (C) Negative charge is localised

Ans. (3)

(3*)

ЭΗ

- **6.** For the complex [Ma₂b₂] if M is sp³ or dsp² hybridised respectively then total number of optical isomers are respectively :
 - (1) 1, 1 (2) 2, 1 (3) 0, 0 (4) 1, 2

Ans. (3)

Sol. Both will not show optical isomerism.

7.	Bond order and magnetic nature of CN ⁻ are respectively		
	(1) 3, diamagnetic	(2) 3, paramagnetic	
	(3) 2.5, paramagnetic	(4) 2.5, diamagnetic	

- Ans. (1)
- **Sol.** CN^{-} is a 14 electron system.

8. Which of the following is incorrect?

(1)
$$\Lambda_{m}^{\circ} NaCl - \Lambda_{m}^{\circ} NaBr = \Lambda_{m}^{\circ} KCl - \Lambda_{m}^{\circ} KBr$$

(3)
$$\Lambda_{m}^{\circ}Nal - \Lambda_{m}^{\circ}NaBr = \Lambda_{m}^{\circ}NaBr - \Lambda_{m}^{\circ}KBr$$

9.

- Sol. Theory based.
 - NaOH + Cl₂ \longrightarrow A + other products Ca(OH)₂+ Cl₂ \longrightarrow B + other products Cold & dil. A & B are respectively (1) NaClO₃, Ca(OCl)₂
 - (1) NaClO3, Ca(OCl)2
 (2) NaClO3, Ca(ClO3)2

 (3) NaCl, Ca(ClO3)2
 (4) NaClO, Ca(ClO3)2

Ans. (1)

Sol. $6NaOH + 3Cl_2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$ $2Ca(OH)_2 + Cl_2 \rightarrow Ca(OCl)_2 + CaCl_2 + H_2O$

10. There are two beakers (I) having pure volatile solvent and (II) having volatile solvent and non-volatile solute. If both beakers are placed together in a closed container then:

(2) $\Lambda_{m}^{\circ}H_{2}O = \Lambda_{m}^{\circ}HCI + \Lambda_{m}^{\circ}NaOH - \Lambda_{m}^{\circ}NaCI$ (4) $\Lambda_{m}^{\circ}NaCI - \Lambda_{m}^{\circ}KCI = \Lambda_{m}^{\circ}NaBr - \Lambda_{m}^{\circ}KBr$

- (1) Volume of solvent beaker will decrease and solution beaker will increase
- (2) Volume of solvent beaker will increase and solution beaker will also increase
- (3) Volume of solvent beaker will decrease and solution beaker will also decrease
- (4) Volume of solvent beaker will increase and solution beaker will decrease

Ans. (1)

Sol. There will be lowering in vapour pressure in second beaker.

- 11. Metal with low melting point containing impurities of high melting point can be purified by
 - (1) Zone refining
 - (3) Distillation

(2) Vapor phase refining(4) Liguation

Ans. (4)

12.

Sol. Theory based

Which of the following statements are correct ?
(I) On decomposition of H₂O₂, O₂ gas is released .
(II) 2-ethylanthraquinol is used in preparation of H₂O₂
(III) On heating KCIO₃, Pb(NO₃)₂, NaNO₃, O₂ gas is released.
(IV) In the preparation of sodium peroxoborate, H₂O₂ is treated with sodium metaborate.
(1) I, II, IV
(2) II, III, IV
(3) I, II, III, IV
(4) I, II, III

	(1) I, II, IV	(2) II, III, IV	(3) I, II, III, IV	(4) I, II, III
Ans.	(3)			
Sol.	Theory based			

- **13.** Amongs the following which is redox reaction ?(1) $N_2 + O_2 \xrightarrow{2000K}$ (2) Formation of O_3 from O_2 (3) Reaction between NaOH and H₂SO₄(4) Reaction between AgNO₃ and NaCI
- Ans. (1) Sol. $N_2 + O_2 \rightarrow 2NO$ $3O_2 \rightarrow 2O_3$ $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ $AgNO_3 + NaCl \rightarrow NaNO_3 + AgCl$

15. Which one of the following amongs each pair will release maximum energy on gaining one electron (A = F, Cl), (B = S, Se), (C = Li, Na)

	(1) (A) = Cl, (B) = S, (C) = Li	(2) (A) = S, (B) = CI, (C) = Li
	(3) (A) = Li, (B) = Cl, (C) = S	(4) (A) = CI, (B) = Li, (C) = S
Ans.	(1)	
Sol.	Theory based	
	-	

- 16. Which of the following statements are incorrect ?
 - (A) Co^{+3} with strong field ligand forms high magnetic moment complex.
 - (B) For Co⁺³ if pairing energy(P) > Δ_0 then the complex formed will have t_{2a}^4 , e_a^2 configuration
 - (C) For $[Co(en)_3]^{3+}$ $\lambda_{absorbed}$ is less than $\lambda_{absorbed}$ for $[CoF_6]^{3-}$
 - (D) If $\Delta_0 = 18000 \text{ cm}^{-1}$ for Co⁺³ then with same ligands for it $\Delta_t = 16000 \text{ cm}^{-1}$
 - (1) A, D (2) B, C (3) A, B (4) A, B, C, D

	(1) A, D	(2) B, C	(3) A, B	(4) A, B, C, D
Ans.	(1)			
Sol.	Theory based			

- 17. 0.6 g of urea on strong heating with NaOH evolves NH₃. Liberated NH₃ will combine completely with which of the following HCl solution ?
 (1) 100 mL of 0.2 N HCl
 (2) 400 mL of 0.2 N HCl
 (3) 100 mL of 0.1 N HCl
 (4) 200 mL of 0.2 N HCl
- Ans. (1)

- 18. Wait
- 19. Wait
- 20. Wait

SECTION – 2 : (Maximum Marks : 20)

- This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
- If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
 - > Full Marks : +4 If ONLY the correct option is chosen.
 - > Zero Marks : 0 In all other cases

21. Number of sp² hybrid carbon atoms in aspartame is – (Chemistry in Everyday life_XII_Unit-16)

Ans.

9

Sol.

All stared carbon atoms of aspartame are sp² hybrid. Aspartame is methyl ester of dipeptide formed from aspartic acid and phenylalanine.

22. 3 gram of acetic acid is mixed in 250 mL of 0.1 M HCl. This mixture is now diluted to 500 mL. 20 mL of this solution is now taken is another container $\frac{1}{2}$ mL of 5M NaOH is added to this. Find the pH of this solution. Find the pH of this solution. (log 3 = 0.4771, pK_a = 4.74)

Ans. 5.22

Sol. m mole of acidic acid in 20 mL = 2m mole of HCl in 20 mL = 1 m mole of NaOH = 2.5 CH₃COOH + NaOH (remaining) —→ CH₃COONa + water 2 0 0 3/2 0.5 3/2 0 _ $pH = PK_a + \log \frac{3/2}{2}$ $= 4.74 + \log 3$ = 4.74 + 0.48 = 5.22

> = 4.74 + log 3 = 4.74 + 0.48 = 5.22

- **23.** Flocculation value for As_2S_3 sol by HCl is 30 m mole L⁻¹. Calcualte mass of H_2SO_4 required in gram for 250 mL sol.
- Ans. 00.37
- Sol. For 1L sol 30 m mol of HCl is required ∴ For 1L sol 15 m mol H₂SO₄ is required For 250 mL of sol

$$\frac{15}{4} \times 10^{-3} \text{ m mol } H_2 SO_4 \equiv 0.3675 \text{ g}$$

24. NaCl $\xrightarrow{K_2Cr_2O_7(s)}$ (A) \xrightarrow{NaOH} (B) $\xrightarrow{dil.H_2SO_4}$ (C) $\xrightarrow{H_2O_2}$ (C)

Determine total number of atoms in per unit formula of (A), (B) & (C)

- Ans. 18.00
- Sol. $(A) = CrO_2Cl_2$ $(B) = Na_2CrO_4$
 - $(C) = CrO_5$
- $\begin{array}{lll} \mbox{25.} & \mbox{Calculate Δ_{f}H}^{\circ}$ (In kJ/mol) for C_{2}H}_{6}(g), if Δ_{c}H}^{\circ}$ [C_{(graphite)}] = -393.5 kJ/mol, $$$$ Δ_{c}H}^{\circ}$ [H_{2}(g)] = -286 kJ/mol $$ and $$$$ $$$$ Δ_{c}H}^{\circ}$ [C_{6}$H}_{6}(g)] = -1560 kJ/mol $$ \end{tabular}$
- Ans. (-85.00)