PART : CHEMISTRY

SECTION - 1 : (Maximum Marks : 80)
 Straight Objective Type

This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. Which of the following reactions are possible?
(A)

(B)

(C)

(D)

(1) A, B, C
(2) B, D
(3) A, C, D
(4) A, C

Ans. (2)
Sol. Vinyl halides and aryl halides do not give Friedel craft's reaction.
2. $\quad A$ and B are in the given reaction ?

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

3. The correct statement about gluconic acid is
(1) It is prepared by oxidation of glucose with HNO_{3}
(2) It is obtained by partial oxidation of glucose
(3) It is dicarboxylic acid
(4) It forms hemiactal or acetal

Ans. (2)

Sol. Gluconic acid $\left[\begin{array}{ll}\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}-\mathrm{COOH} \\ \mathrm{O} \\ \mathrm{OH} & \mathrm{OH} \mathrm{OH} \text { OH OH }\end{array}\right]$ is obtained by partial oxidation of glucose by Tollen's reagent or Fehling solution or $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$.
Gluconic acid can not form hemiacetal or acetal
4. Stability order of following alkoxide ions is

(A)

(B)

(C)
(1) C $>$ B $>$ A
(2) A $>$ C $>$ B
(3) B $>$ A $>$ C
(4) C $>$ A $>$ B

Ans. (1)
Sol. When negative charge is delocalised with electron withdrawing group like $\left(\mathrm{NO}_{2}\right)$ then stability increases.
(A) Negative charge is delocalised with NO_{2} group
(B) Negative charge is delocalised with carbon of alkene
(C) Negative charge is localised
5.

A and B are -
(1)

\&

(2)

\&

(3*)

\&

(4)

\&

Ans. (3)

Sol.

6. For the complex $\left[\mathrm{Ma}_{2} \mathrm{~b}_{2}\right]$ if M is sp^{3} or dsp^{2} hybridised respectively then total number of optical isomers are respectively :
(1) 1,1
(2) 2,1
(3) 0,0
(4) 1, 2

Ans. (3)
Sol. Both will not show optical isomerism.
7. Bond order and magnetic nature of CN^{-}are respectively
(1) 3, diamagnetic
(2) 3, paramagnetic
(3) 2.5, paramagnetic
(4) 2.5, diamagnetic

Ans. (1)
Sol. CN^{-}is a 14 electron system.
8. Which of the following is incorrect?
(1) $\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaCl}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaBr}=\Lambda_{\mathrm{m}}^{\circ} \mathrm{KCl}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{KBr}$
(2) $\Lambda_{\mathrm{m}}^{\circ} \mathrm{H}_{2} \mathrm{O}=\Lambda_{\mathrm{m}}^{\circ} \mathrm{HCl}+\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaOH}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaCl}$
(3) $\Lambda_{\mathrm{m}}^{\circ} \mathrm{Nal}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaBr}=\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaBr}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{KBr}$
(4) $\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaCl}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{KCl}=\Lambda_{\mathrm{m}}^{\circ} \mathrm{NaBr}-\Lambda_{\mathrm{m}}^{\circ} \mathrm{KBr}$

Ans. (3)
Sol. Theory based.
9. $\underset{\text { Hot } \& \text { conc. }}{\mathrm{NaOH}}+\mathrm{Cl}_{2} \longrightarrow \mathrm{~A}+$ other products
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{~B}+$ other products Cold \& dil.
$A \& B$ are respectively
(1) $\mathrm{NaClO}_{3}, \mathrm{Ca}(\mathrm{OCl})_{2}$
(2) $\mathrm{NaClO}_{3}, \mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$
(3) $\mathrm{NaCl}, \mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$
(4) $\mathrm{NaClO}, \mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$

Ans. (1)
Sol. $\quad 6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{Ca}(\mathrm{OCl})_{2}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. There are two beakers (I) having pure volatile solvent and (II) having volatile solvent and non-volatile solute. If both beakers are placed together in a closed container then:
(1) Volume of solvent beaker will decrease and solution beaker will increase
(2) Volume of solvent beaker will increase and solution beaker will also increase
(3) Volume of solvent beaker will decrease and solution beaker will also decrease
(4) Volume of solvent beaker will increase and solution beaker will decrease

Ans. (1)
Sol. There will be lowering in vapour pressure in second beaker.
11. Metal with low melting point containing impurities of high melting point can be purified by
(1) Zone refining
(2) Vapor phase refining
(3) Distillation
(4) Liquation

Ans. (4)
Sol. Theory based
12. Which of the following statements are correct ?
(I) On decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{2}$ gas is released .
(II) 2-ethylanthraquinol is used in preparation of $\mathrm{H}_{2} \mathrm{O}_{2}$
(III) On heating $\mathrm{KClO}_{3}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NaNO}_{3}, \mathrm{O}_{2}$ gas is released.
(IV) In the preparation of sodium peroxoborate, $\mathrm{H}_{2} \mathrm{O}_{2}$ is treated with sodium metaborate.
(1) I, II, IV
(2) II, III, IV
(3) I, II, III, IV
(4) I, II, III
(1) I, II, IV
(2) II, III, IV
(3) I, II, III, IV
(4) I, II, III

Ans. (3)
Sol. Theory based
13. Amongs the following which is redox reaction ?
(1) $\mathrm{N}_{2}+\mathrm{O}_{2} \quad \xrightarrow{2000 \mathrm{~K}}$
(2) Formation of O_{3} from O_{2}
(3) Reaction between NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) Reaction between AgNO_{3} and NaCl

Ans. (1)
Sol. $\quad \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
$3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$
14.

No. of Molecules

Select the correct options :
(1) $A=C_{\text {mps }}, B=C_{\text {Average }}, C=C_{\text {RMS }}$
(2) $A=C_{\text {Average }}, B=C_{\text {mps }}, C=C_{\text {RMS }}$
(3) $A=C_{\text {rms }}, B=C_{\text {Average }}, C=C_{\text {mps }}$,
(4) $A=C_{\text {Average }}, B=C_{\text {mps }}, C=C_{\text {RMS }}$

Ans. (1)
Sol. $\quad C_{\text {RMS }}>\mathrm{C}_{\text {Avg }}>\mathrm{C}_{\text {MPS }}$
15. Which one of the following amongs each pair will release maximum energy on gaining one electron ($\mathrm{A}=\mathrm{F}, \mathrm{Cl}),(\mathrm{B}=\mathrm{S}, \mathrm{Se}),(\mathrm{C}=\mathrm{Li}, \mathrm{Na})$
(1) $(A)=\mathrm{Cl},(B)=\mathrm{S},(\mathrm{C})=\mathrm{Li}$
(2) $(A)=S,(B)=\mathrm{Cl},(C)=\mathrm{Li}$
(3) $(A)=\mathrm{Li},(B)=\mathrm{Cl},(\mathrm{C})=\mathrm{S}$
(4) $(A)=C l,(B)=L i,(C)=S$

Ans. (1)
Sol. Theory based
16. Which of the following statements are incorrect?
(A) Co^{+3} with strong field ligand forms high magnetic moment complex.
(B) For Co^{+3} if pairing energy $(\mathrm{P})>\Delta_{0}$ then the complex formed will have $\mathrm{t}_{2 \mathrm{~g}}^{4}, \mathrm{e}_{\mathrm{g}}^{2}$ configuration
(C) For $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} \lambda_{\text {absorbed }}$ is less than $\lambda_{\text {absorbed }}$ for $\left[\mathrm{CoF}_{6}\right]^{3-}$
(D) If $\Delta_{0}=18000 \mathrm{~cm}^{-1}$ for Co^{+3} then with same ligands for it $\Delta_{t}=16000 \mathrm{~cm}^{-1}$
(1) A, D
(2) B, C
(3) A, B
(4) A, B, C, D
(1) A, D
(2) B, C
(3) A, B
(4) A, B, C, D

Ans. (1)
Sol. Theory based
17. 0.6 g of urea on strong heating with NaOH evolves NH_{3}. Liberated NH_{3} will combine completely with which of the following HCl solution?
(1) 100 mL of 0.2 N HCl
(2) 400 mL of 0.2 N HCl
(3) 100 mL of 0.1 N HCl
(4) 200 mL of 0.2 N HCl

Ans. (1)
Sol. $2 \times$ mole of Urea \equiv mole of NH_{3}
mole of $\mathrm{NH}_{3}=$ mole of HCl
\therefore mole of $\mathrm{HCl}=0.02$ mole
18. Wait
19. Wait
20. Wait

SECTION - 2 : (Maximum Marks : 20)

* This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
* If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
> Full Marks : +4 If ONLY the correct option is chosen.
> Zero Marks : 0 In all other cases

21. Number of sp^{2} hybrid carbon atoms in aspartame is - (Chemistry in Everyday life_XII_Unit-16)

Ans. 9

Sol.

All stared carbon atoms of aspartame are sp^{2} hybrid. Aspartame is methyl ester of dipeptide formed from aspartic acid and phenylalanine.
22. 3 gram of acetic acid is mixed in 250 mL of 0.1 M HCl . This mixture is now diluted to 500 mL .20 mL of this solution is now taken is another container $\frac{1}{2} \mathrm{~mL}$ of 5 M NaOH is added to this. Find the pH of this solution. Find the pH of this solution. $\left(\log 3=0.4771, \mathrm{pK}_{\mathrm{a}}=4.74\right)$

Ans. 5.22

Sol. m mole of acidic acid in $20 \mathrm{~mL}=2$
m mole of HCl in $20 \mathrm{~mL}=1$
m mole of $\mathrm{NaOH}=2.5$

$\mathrm{CH}_{3} \mathrm{COOH}$	+NaOH (remaining) $\longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+$ water		
2	$3 / 2$	0	0
0.5	0	$3 / 2$	-

$\mathrm{pH}=\mathrm{PK}_{\mathrm{a}}+\log \frac{3 / 2}{2}$
$=4.74+\log 3$

$$
=4.74+0.48=5.22
$$

$$
\begin{aligned}
& =4.74+\log 3 \\
& =4.74+0.48=5.22
\end{aligned}
$$

23. Flocculation value for $\mathrm{As}_{2} \mathrm{~S}_{3}$ sol by HCl is $30 \mathrm{~m}_{\mathrm{mole} \mathrm{L}}{ }^{-1}$. Calcualte mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required in gram for 250 mL sol.

Ans. 00.37
Sol. For 1 L sol 30 m mol of HCl is required
\therefore For 1 L sol $15 \mathrm{~m} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required
For 250 mL of sol

$$
\frac{15}{4} \times 10^{-3} \mathrm{~m} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \equiv 0.3675 \mathrm{~g}
$$

24. $\quad \mathrm{NaCl} \xrightarrow[\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s})}(\mathrm{A}) \xrightarrow{\mathrm{NaOH}}(\mathrm{B}) \xrightarrow[+\mathrm{H}_{2} \mathrm{O}_{2}]{\text { dil. }_{2} \mathrm{SO}_{4}}(\mathrm{C})$ Determine total number of atoms in per unit formula of $(A),(B) \&(C)$

Ans. 18.00
Sol. $(A)=\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$(B)=\mathrm{Na}_{2} \mathrm{CrO}_{4}$
$(\mathrm{C})=\mathrm{CrO}_{5}$
25. Calculate $\Delta_{\mathrm{f}} \mathrm{H}^{\circ}(\operatorname{ln~kJ} / \mathrm{mol})$ for $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$, if $\Delta_{\mathrm{c}} \mathrm{H}^{\circ}\left[\mathrm{C}_{\text {(graphite) }}\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$, $\Delta \mathrm{cH}{ }^{\circ}\left[\mathrm{H}_{2}(\mathrm{~g})\right]=-286 \mathrm{~kJ} / \mathrm{mol}$ and
$\Delta \mathrm{cH}^{\circ}{ }^{\circ}\left[\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})\right]=-1560 \mathrm{~kJ} / \mathrm{mol}$

Ans. (-85.00)
Sol. $\quad \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{~g})+3.5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$2 \times(-393.5)+3 \times(-286)-(-1560)=-85 \mathrm{~kJ} / \mathrm{mol}$

