PART : CHEMISTRY

SECTION-1 : (Maximum Marks80)
 Straight Objective Type (

This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. $\quad 5 \mathrm{~g}$ of Zn reacts with
(I) Excess of NaOH
(II)
(1) $2: 1$
(2) $1: 2$
(3) $1: 1$
(4) $3: 1$

Ans. (3)
Sol. $\mathrm{Zn}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
According to stoichiometry in both the reactions, equal number of moles of H_{2} are evolved.
2. Given $\mathrm{K}_{\text {sp }}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 6×10^{-31} then determine $\left[\mathrm{OH}^{-}\right]$.
(Neglect the contribution of OH^{-}ions from $\mathrm{H}_{2} \mathrm{O}$)
(1) $\left(18 \times 10^{-31}\right)^{1 / 4} \mathrm{M}$
(2) $\left(18 \times 10^{-31}\right)^{1 / 2} \mathrm{M}$
(3) $\left(6 \times 10^{-31}\right)^{1 / 4} \mathrm{M}$
(4) $\left(\frac{6}{27} \times 10^{-31}\right)^{1 / 4} \mathrm{M}$

Ans. (1)
Sol. $\mathrm{Cr}(\mathrm{OH})_{3} \longrightarrow \mathrm{Cr}_{\mathrm{s}}^{+3}+3 \mathrm{OH}^{-}$

$$
\begin{aligned}
& \mathrm{K}_{\text {sp }}=\mathrm{s} \cdot(3 \mathrm{~s})^{3} \\
\Rightarrow \quad & 6 \times 10^{-31}=27 . \mathrm{s}^{4} \\
\Rightarrow \quad & \mathrm{~s}=\left(\frac{6}{27} \times 10^{-31}\right)^{1 / 4} \\
& {\left[\mathrm{OH}^{-}\right]=3 \mathrm{~s} } \\
& =3 \times\left(\frac{6}{27} \times 10^{-31}\right)^{1 / 4}=\left(18 \times 10^{-31}\right)^{1 / 4} \mathrm{M}
\end{aligned}
$$

3. Select the correct statements among the followings
(A) LiCl does not dissolve in pyridine
(B) Li does not react ethyne to form ethynide.
(C) Li and Mg react slowly with water.
(D) Among alkali metals Li has highest hydration tendency.
(1) B, C, D
(2) A, B, C, D
(3) A, B, C
(4) C, D

Ans. (1)
Sol.
4. Given an element having following ionisation enthalpies $I E_{1}=496 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ and $I E_{2}=4562 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ one mole hydroxide of this element is treated separated with HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ respectively. Moles of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacted respectively is
(1) $1,0.5$
(2) $0.5,1$
(3) 2, 0.5
(4) $0.5,2$

Ans. (1)
Sol. According to the given data of I.E, This element must belong to group 1 and thus is monovalent \& form hydroxide of the type $\mathrm{M}(\mathrm{OH})$.
$\mathrm{MOH}+\mathrm{HCl} \longrightarrow \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}$
1 mole 1 mole
$2 \mathrm{MOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{M}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
1 mole $1 / 2$ mole
Sol.
M(OH)
$\mathrm{MOH}+\mathrm{HCl} \longrightarrow \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}$
1 mole 1 mole
$2 \mathrm{MOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{M}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
1 mole $1 / 2$ mole
5. Reactant A represented by square is in equilibrium with product B represented by circles. Then value of equilibrium constant is

(1) 1
(2) 2
(3) 3
(4) 4

Ans. (2)
6. Given following complexes
(I) $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(II) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
(III) $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$
(IV) $\mathrm{Na}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]\left(\Delta_{0}>\mathrm{P}\right)$

Correct order of spin only magnetic moment for the above complexes is.
(I) $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(II) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
(III) $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$
(IV) $\mathrm{Na}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]\left(\Delta_{0}>\mathrm{P}\right)$
(1) (II) $>$ (III) $>$ (IV) $>$ I
(2) (II) $>$ (IV) $>$ (III) $>$ (I)
(3) (I) $>$ (IV) $>$ (III) $>$ (II)
(4) (II) $>$ (I) $>$ (IV) $>$ (III)

Ans. (1)
Sol. As, $\mu_{\mathrm{s}}=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
Complex $(\mathrm{I}) \rightarrow \mathrm{Fe}^{+2} \Rightarrow$ S.F.L $\Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,2} \mathrm{e}_{\mathrm{g}}{ }^{0,0} \Rightarrow \mu_{\mathrm{s}}=0$
Complex (II) $\rightarrow \mathrm{Cr}^{+2} \Rightarrow$ W.F.L $\Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{e}_{\mathrm{g}}{ }^{1,0} \Rightarrow \mu_{\mathrm{s}}=\sqrt{24}$ B.M.
Complex (III) $\rightarrow \mathrm{Co}^{+2} \Rightarrow$ W.F.L $\Rightarrow \mathrm{e}_{\mathrm{g}}^{2,2} \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \Rightarrow \mu_{\mathrm{s}}=\sqrt{15}$ B.M.
Complex (IV) $\rightarrow \mathrm{Fe}^{+3} \Rightarrow$ S.F.L $\Rightarrow \mathrm{t}_{2}^{2,2,1} \mathrm{e}^{0,0} \Rightarrow \mu_{\mathrm{s}}=\sqrt{3}$ B.M.
7. Select the correct option :
(1) Entropy is function of temperature and also entropy change is function of temperature.
(2) Entropy is a function of temperature \& entropy change is not a function of temperature.
(3) Entropy is not a function of temperature \& entropy change is a function of temperature.

Ans. (1)
Sol. $\Delta \mathrm{S}=\int \frac{\mathrm{dq}}{\mathrm{T}}$
$S_{T}=\int_{0}^{T} \frac{n c d T}{T}$
8. A compound $\left(A ; B_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}\right)$ reacts with LiBH_{4} to form inorganic benzene (B). (A) reacts with (C) to form $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$. (B) and (C) are respectively.
(1) Boron nitride, MeMgBr
(2) Boron nitride, MeBr
(3) Borazine, MeBr
(4) Borazine, MeMgBr

Ans. (4)
Sol. $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}+\mathrm{LiBH}_{4} \longrightarrow \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}+\mathrm{LiCl}+\mathrm{BCl}_{3}$
(A)
(B)
$\underset{(\mathrm{A})}{\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}}+\underset{\text { (C) }}{3 \mathrm{MeMgBr}} \longrightarrow \mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}+3 \mathrm{MgBrCl}$
9. In a box a mixture containing $\mathrm{H}_{2}, \mathrm{O}_{2}$ and CO along with charcoal is present then variation of pressure with the time will be as follows :
(1)

(2)

(3)

(4)

Ans. (3)
10. Given complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$. In it if $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ bond angle is 90° then it is :
(1) Cis-isomer
(2) Trans- isomers
(3) Meridional and trans
(4) Cis and trans both

Ans. (1)

Sol.

Cis form
11. Amongst the following which has minimum conductivity.
(1) Distilled water
(2) Sea water
(3) Saline water used for intra venous injection
(4) Well-water

Ans. (1)
Sol. Theory based.
12. Number of sp^{2} hybrid orbitals in Benzene is :
(1) 18
(2) 24
(3) 6
(4) 12

Ans. (1)
Sol. In benzene total $s i x \mathrm{sp}^{2}$ hybrid carbon atoms are present. Each carbon atom has $3 \mathrm{sp}^{2}$ hybrid orbitals. Therefore total sp^{2} hybrid orbitals are 18 in benzene.
Sol.
13. Which of the following reaction will not form racemic mixture as product?
(1)

(2)

(3)

(4)

Ans. (2)
Sol.

In this reaction, major product is not chiral.
14. In which compound $\mathrm{C}-\mathrm{Cl}$ bond length is shortest?
(1) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(3) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{OCH}_{3}$
(4) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{NO}_{2}$

Ans. (4)
Sol. Resonance form of $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}-\mathrm{NO}_{2}$ is more stable than resonance form of any other given compounds. Hence, double bond character in carbon-chlorine bond is maximum and bond length is shortest.
15. Biochemical oxygen demand (BOD) is defined as \qquad in ppm of O_{2}.
(1) Required to sustain life
(2) The amount of oxygen required by bacteria to break down the organic matter present in a certain volume of a sample of water.
(3) The amount of oxygen required by anaerobic bacteria to break down the inorganic matter present in a certain volume of a sample of water.
(4) Required photochemical reaction to degrade waste.

Ans. (2)
Sol. The amount of oxygen required by bacteria to break down the organic matter present in a certain volume of a sample of water, is called Biochemical Oxygen Demand (BOD).
16. Monomer(s) of which of the given polymer is chiral?
Buna-S
Neoprene
(3) Nylon-6,6
(4) PHBV

Ans. (4)
Sol. Polymers

Monomers

(1) Buna-S $-\left[\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right]-$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Ph} \& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(2) Neoprene $-\left[\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CCl}-\mathrm{CH}_{2}\right]_{n}-$

(3) Nylon-6,6
$\mathrm{HO}_{2} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}_{2} \mathrm{H} \& \mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$
$\sim\left[\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}\right]_{\mathrm{n}} \sim$

In PHBV, both monomers have chiral centre.

(polymers)

(1) ब्युना-S $-\left[\mathrm{CH}_{2}-\mathrm{C}_{\mathrm{Ph}}^{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right]-$
(2) नियोप्रीन $-\left[\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CCl}-\mathrm{CH}_{2}\right]_{\mathrm{n}}-$
(3) नायलॉन-6,6
$\sim\left[\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}\right]_{\mathrm{n}} \sim$

(4)

(monomers)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Ph} \& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

$\mathrm{HO}_{2} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}_{2} \mathrm{H}$ \& $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}$
(3-Hydroxypertanoic acid)
ydroxybutanoic acid
c acid)
17.

Lab tests			
Compound	Molisch's test	Barfoed test	Biuret test
A	\checkmark	\mathbf{x}	\mathbf{x}
B	\checkmark	\checkmark	\mathbf{x}
C	\mathbf{x}	\mathbf{x}	\checkmark

Which of the following options is correct ?

(1)	Lactose	Glucose	Albumin
(2)	Lactose	Glucose	Alanine
(3)	Lactose	Fructose	Alanine
(4)	Glucose	Sucrose	Albumin

Ans. (1)
Sol.
18. The order of basic character is :
(I)

(II)

(III)

(IV)

(1) I $>$ II $>$ III $>$ IV
(2) IV $>$ III $>$ I $>$ II
(3) II $>$ I $>$ III $>$ IV
(4) IV $>$ I $>$ II $>$ III

Ans. (2)
Sol. Basic strength depends upon availability of lone pairs. Greater the resonance of lone pairs lesser the basic strength.
19. \(\begin{array}{r}Compound A

\)| HCl |
| :--- |
| $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$ |

$\mathrm{BaNO}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NBr}_{3}\right)\end{array}$

Compound A will be :
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

20. Compound $X \xrightarrow[\text { (2) alc. } \mathrm{KOH}]{\text { (1) } \mathrm{Br}_{2}, h \nu}$

(3) O_{3}
(4) $\mathrm{Me}_{2} \mathrm{~S}$
(5) dil. NaOH, Δ

Compound X will be :
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

SECTION - 2 : (Maximum Marks: 20)

* This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
* If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
$>$ Full Marks : +4 If ONLY the correct option is chosen.
$>$ Zero Marks : 0 In all other cases

21. Total number of $\mathrm{Cr}-\mathrm{O}$ bonds in Chromate ion and dichromate ion is.

Ans. 12.00

Sol.

\Rightarrow Total number of Cr and O bonds is 12 .
22. Lacto bacillus has generation time 60 min . at 300 K and 40 min . at 400 K . Determine activation energy in $\frac{\mathrm{kJ}}{\mathrm{mol}} \cdot\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\left[\ln \left(\frac{2}{3}\right)=-0.4\right]$ (given wrong in paper)

Ans.
Sol. $\quad \ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\ln \left(\frac{60}{40}\right)=\frac{E_{a}}{8.3} \times \frac{100}{400 \times 300}$
$\ln (3 / 2) \times 8.3 \times 1200=E_{a}$
$\Rightarrow \quad \mathrm{E}_{\mathrm{a}}=0.4 \times 8.3 \times 1200$
$\Rightarrow \quad \mathrm{E}_{\mathrm{a}}=3984 \mathrm{~J} / \mathrm{mol}$.
$\Rightarrow \quad \mathrm{E}_{\mathrm{a}}=3.984 \mathrm{~kJ} / \mathrm{mol}$.
23. One litre sea water $\left(\mathrm{d}=1.03 \mathrm{~g} / \mathrm{cm}^{3}\right)$ contains $10.3 \mathrm{mg} \mathrm{O}_{2}$ gas. Determine concentration of O_{2} in ppm .

Ans. 10.00
Sol. $\mathrm{ppm}=\frac{10.3 \times 10^{-3}}{1030} \times 10^{6}=10$
24. 0.1 ml of an ideal gas has volume $1 \mathrm{dm}^{3}$ in a locked box with friction less piston. The gas is in thermal equilibrium with excess of 0.5 m aqueous ethylene glycol at its freezing point. If piston is released all of a sudden at 1 atm then determine the final volume of gas in $\mathrm{dm}^{3}\left(\mathrm{R}=0.08 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathrm{~K}_{\mathrm{f}}=2.0 \mathrm{~K}\right.$ molal $^{-1}$
molal $^{-1}$).
Ans. $\quad\left(2.176 \mathrm{dm}^{3}, 2.18\right)$

Sol.

$\mathrm{K}_{\mathrm{f}}=2.0$
$\mathrm{m}=0.5 \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}$
$=0.5 \times 2$
Tinitial $=272 \mathrm{~K}$
$\mathrm{n}=0.1 \mathrm{~mol}$
$\mathrm{V}=1 \mathrm{dm}^{3}$
$\mathrm{P}_{\text {gas }}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{0.1 \times 0.08 \times 272}{1}$
$=2.176 \mathrm{~atm}$
After releasing piston $P_{1} V_{1}=P_{2} V_{2}$
पिस्टन छोडने के पश्चात् $P_{1} V_{1}=P_{2} V_{2}$

$$
\begin{aligned}
& 2.176 \times 1=1 \times V_{2} \\
& V_{2}=2.176 \mathrm{dm}^{3}
\end{aligned}
$$

25. Compound $\mathrm{A} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{B} \xrightarrow[573 \mathrm{~K}]{\mathrm{Cu}} \underset{\substack{\text { Cu } \\ \mathrm{CH}_{3}}}{\mathrm{CH}}=\mathrm{CH}-\mathrm{CH}_{3}$

Percentage carbon in compound A is:
यौगिक $\mathrm{A} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{B} \xrightarrow[573 \mathrm{~K}]{\mathrm{Cu}} \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$
Ans. 66.67
Sol.

Percentage carbon in compound $A=\left(\frac{12 \times 4}{48+16+8} \times 100\right)=66.67$

