Orienting Intelligence

PART : MATHEMATICS

1. Let $y=f(x)$ is a solution of differential equation $e^{y}\left(\frac{d y}{d x}-1\right)=e^{x}$ and $f(0)=0$ then $f(1)$ is equal to :
(1) ln 2
(2) $2+\ell \mathrm{n} 2$
(3) $1+\ell \mathrm{n} 2$
(4) $3+\ell n 2$

Ans. (3)
Sol. $\quad e^{y}=t$
$e^{y} \frac{d y}{d x}=\frac{d t}{d x}$
$\frac{d t}{d x}-t=e^{x}$
$I F=e^{\int-1 . d x}=e^{-x}$
$t\left(e^{-x}\right)=\int e^{x} \cdot e^{-x} d x$
$e^{y-x}=x+c$
Put $x=0, y=0$
$e^{y-x}=x+1$
$y=x+\ln (x+1)$
at $x=1, y=1+\ell n(2)$
2. If α is a roots of equation $x^{2}+x+1=0$ and $A=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha\end{array}\right]$ then A^{31} equal to :
(1) A
(2) A^{2}
(3) A^{3}
(4) A^{4}

Ans. (3)
Sol. $\quad A^{2}=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\Rightarrow A^{4}=1$
$\Rightarrow A^{30}=A^{28} \times A^{3}=A^{3}$
3. The six digit numbers that can be formed using digits $1,3,5,7,9$ such that each digit is used at least once.

Ans. 1800
Sol. 1, 3, 5, 7, 9
For digit to repeat we have ${ }^{5} \mathrm{C}_{1}$ choice
And six digits can be arrange in $\frac{6}{\lfloor 2}$ ways.
Hence total such numbers $=\frac{5 \mid 6}{\mid 2}$
4. The area that is enclosed in the circle $x^{2}+y^{2}=2$ which is not common area enclosed by $y=x$ \& $y^{2}=x$ is
(1) $\frac{1}{12}(24 \pi-1)$
(2) $\frac{1}{6}(12 \pi-1)$
(3) $\frac{1}{12}(6 \pi-1)$
(4) $\frac{1}{12}(12 \pi-1)$

Ans. (2)
Sol. Total area - enclosed area
$2 \pi-\int_{0}^{1} \sqrt{x}-x d x$
$2 \pi-\left(\frac{2 x^{3 / 2}}{3}-\frac{x^{2}}{2}\right)_{0}^{1}$

$2 \pi-\left(\frac{2}{3}-\frac{1}{2}\right) \Rightarrow 2 \pi-\left(\frac{1}{6}\right) \Rightarrow \frac{12 \pi-1}{6}$
5. If sum of all the coefficient of even powers in $\left(1-x+x^{2}-x^{3} \ldots \ldots . x^{2 n}\right)\left(1+x+x^{2}+x^{3}\right.$ \qquad .$\left.+x^{2 n}\right)$ is 61 then n is equal to
(1) 30
(2) 32
(3) 28
(4) 36

Ans. (1)
Sol. Let $\left(1-x+x^{2} \ldots.\right)\left(1+x+x^{2} \ldots \ldots\right)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots$
put $x=1$
$1(2 n+1)=a_{0}+a_{1}+a_{2}+\ldots . . a_{2 n}$
put $x=-1$
$(2 n+1) \times 1=a_{0}-a_{1}+a_{2}+\ldots . . a_{2 n}$
Form (i) + (ii)

$$
\begin{aligned}
4 n+2= & 2\left(a_{0}+a_{2}+\ldots\right) \\
& =2 \times 61 \\
\Rightarrow & 2 n+1=61 \Rightarrow n=30
\end{aligned}
$$

6. If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16 then the value of $m+n$ is
Ans. 18
Sol. $\operatorname{Var}(1,2, \ldots \ldots, n)=10 \Rightarrow \frac{1^{2}+2^{2}+\ldots \ldots \ldots+n^{2}}{n}-\left(\frac{1+2+\ldots \ldots \ldots+n}{n}\right)^{2}=10$
$\Rightarrow \frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\left(\frac{\mathrm{n}+1}{2}\right)^{2}=10$
$\Rightarrow \mathrm{n}^{2}-1=120 \quad \Rightarrow \mathrm{n}=11$
$\operatorname{Var}(2,4,6, \ldots \ldots \ldots, 2 m)=16 \Rightarrow \operatorname{var}(1,2, \ldots \ldots, m)=4$
$\Rightarrow \mathrm{m}^{2}-1=48 \Rightarrow \mathrm{~m}=7 \Rightarrow \mathrm{~m}+\mathrm{n}=18$
7. Evaluate $\lim _{x \rightarrow 2} \frac{3^{x}+3^{x-1}-12}{3^{\frac{-x}{2}}-3^{1-x}}$
Ans. 72

Ans. 72

Sol. Put $3^{\frac{x}{2}}=t$
$\Rightarrow \lim _{t \rightarrow 3} \frac{\frac{4 t^{2}}{3}-12}{-\frac{3}{t^{2}}+\frac{1}{t}}=\lim _{t \rightarrow 3} \frac{4\left(t^{2}-9\right) t^{2}}{3(-3+t)}=\lim _{t \rightarrow 3} \frac{4 t^{2}(3+t)}{3}=\frac{4 \times 9 \times 6}{3}=72$
8. If $f(x)$ is continuous and differentiable in $x \in[-7,0]$ and $f^{\prime}(x) \leq 2 \forall x \in[-7,0]$, also $f(-7)=-3$ then range of $f(-1)+f(0)$
(1) $[-5,-7]$
(2) $(-\infty, 6]$
(3) $(-\infty, 20]$
(4) $[-5,3]$

Ans. (3)
Sol. Lets use LMVT for $x \in[-7,-1]$
$\frac{f(-1)-f(-7)}{(-1+7)} \leq 2$
$\frac{f(-1)+3}{6} \leq 2 \Rightarrow f(-1) \leq 9$
Also use LMVT for $x \in[-7,0]$
$\frac{f(0)-f(-7)}{(0+7)} \leq 2$
$\frac{f(0)+3}{7} \leq 2 \Rightarrow f(0) \leq 11 \quad \therefore \quad f(0)+f(-1) \leq 20$
9. If $y=m x+4$ is common tangent to parabolas $y^{2}=4 x$ and $x^{2}=2 b y$. Then value of b is
(1) -64
(2) -32
(3) -128
(4) 16

Ans. (3)
Sol. $y=m x+4$
$y^{2}=4 x$ tangent

$$
\begin{equation*}
y=m x+\frac{a}{m} \Rightarrow y=m x+\frac{1}{m} \tag{ii}
\end{equation*}
$$

from (i) and (ii)

$$
4=\frac{1}{m} \Rightarrow m=\frac{1}{4}
$$

So line $y=\frac{1}{4} x+4$ is also tangent to parabola $x^{2}=2 b y$, so solve
$x^{2}=2 b\left(\frac{x+16}{4}\right)$
$\Rightarrow 2 x^{2}-b x-16 b=0 \quad \Rightarrow D=0 \Rightarrow b^{2}-4 \times 2 \times(-16 b)=0$
$\Rightarrow b^{2}+32 \times 4 b=0$
$b=-128, b=0$ (not possible)
10. If α and β are the roots of equation $(k+1) \tan ^{2} x-\sqrt{2} \lambda \tan x=1-k$ and $\tan ^{2}(\alpha+\beta)=50$. Find value of λ.
(1) 10
(2) 5
(3) 7
(4) 12

Ans. (1)

$(\mathrm{k}+1) \tan ^{2} \mathrm{x}-\sqrt{2} \lambda \tan \mathrm{x}+(\mathrm{k}-1)=0$
$\tan \alpha+\tan \beta=\frac{\sqrt{2 \lambda}}{\mathrm{k}+1}$
$\tan \alpha \tan \beta=\frac{\mathrm{k}-1}{\mathrm{k}+1}$
$\tan (\alpha+\beta)=(\mathrm{k}-1)=0 \frac{\frac{\sqrt{2} \lambda}{\mathrm{k}+1}}{1-\frac{\mathrm{k}-1}{\mathrm{k}+1}}=\frac{\sqrt{2 \lambda}}{2}=\frac{\lambda}{\sqrt{2}}$
$\tan ^{2}(\alpha+\beta)=\frac{\lambda^{2}}{2}=50$
$\lambda=10$
11. Find image of point $(2,1,6)$ in the plane containing points $(2,1,0),(6,3,3)$ and $(5,2,2)$
(1) $(6,5,-2)$
(2) $(6,-5,2)$
(3) $(2,-3,4)$
(4) $(2,-5,6)$

Ans. (1)

Sol. Plane is $x+y-2 z=3 \quad \Rightarrow \quad \frac{x-2}{1}=\frac{y-1}{1}=\frac{z-6}{-2}=\frac{-2(2+1-12-3)}{6} \Rightarrow(x, y, z)=(6,5,-2)$
12. Let $(x)^{k}+(y)^{k}=(a)^{k}$ where $a, k>0$ and $\frac{d y}{d x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$, then find k
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(1) 2

Ans. (2)
Sol. $k \cdot x^{k-1}+k \cdot y^{k-1} \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\left(\frac{x}{y}\right)^{k-1}$
$\frac{d y}{d x}+\left(\frac{x}{y}\right)^{k-1}=0$
$k-1=-\frac{1}{3}$
$\mathrm{k}=1-\frac{1}{3}=\frac{2}{3}$
13. If $g(x)=x^{2}+x-1$ and $g(f(x))=4 x^{2}-10 x+5$, then find $f\left(\frac{5}{4}\right)$.
(1) $\frac{1}{2}$
(2) $-\frac{1}{2}$
(3) $-\frac{1}{3}$
(4) $\frac{1}{3}$

Ans. (2)
Sol. $\quad g(f(x))=f^{2}(x)+f(x)-1$
$g\left(f\left(\frac{5}{4}\right)\right)=4\left(\frac{5}{4}\right)^{2}-10 \cdot \frac{5}{4}+5=-\frac{5}{4}$
$g\left(f\left(\frac{5}{4}\right)\right)=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1$
$-\frac{5}{4}=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1$
$f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)+\frac{1}{4}=0$
$\left(f\left(\frac{5}{4}\right)+\frac{1}{2}\right)^{2}=0$
$f\left(\frac{5}{4}\right)=-\frac{1}{2}$
14. If $z=x+i y$ and real part $\left(\frac{z-1}{2 z+i}\right)=1$ then locus of z is
(1) Straight line with slope 2
(2) Straight line with slope $-\frac{1}{2}$
(3) circle with diameter $\frac{\sqrt{5}}{2}$
(4) circle with diameter $\frac{1}{2}$

Ans. (3)
Sol. $\quad z=x+i y$
$\left(\frac{z-1}{2 z+i}\right)=\frac{(x-1)+i y}{2(x+i y)+i}=\frac{(x-1)+i y}{2 x+(2 y+1) i} \times \frac{2 x-(2 y+1) i}{2 x-(2 y+1) i}$
$\operatorname{Re}\left(\frac{z+1}{2 z+i}\right)=\frac{2 x(x-1)+y(2 y+1)}{(2 x)^{2}+(2 y+1)^{2}}=1$
$\Rightarrow 2 x^{2}+2 y^{2}-2 x+y=4 x^{2}+4 y^{2}+4 y+1 \quad \Rightarrow 2 x^{2}+2 y^{2}+2 x+3 y+1=0$
$\Rightarrow x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0 \quad$ Circle with centre $\quad\left(-\frac{1}{2}-\frac{3}{4}\right)$
$r=\sqrt{\frac{1}{4}+\frac{9}{16}-\frac{1}{2}}=\sqrt{\frac{4+9-8}{16}}=\frac{\sqrt{5}}{4}$
15. If distance between the foci of an ellipse is 6 and distance between its directrices is 12 , then length of its latus rectum is
(1) 4
(2) $3 \sqrt{2}$
(3) 9
(4) $2 \sqrt{2}$

Ans. (2)
Sol. $2 \mathrm{ae}=6 \quad$ and और $\quad \frac{2 \mathrm{a}}{\mathrm{e}}=12$
$\Rightarrow \mathrm{ae}=3 \quad$ and और $\quad \frac{\mathrm{a}}{\mathrm{e}}=6$
$\Rightarrow a^{2}=18$
$\Rightarrow b^{2}=a^{2}-a^{2} e^{2}=18-9=9 \quad \Rightarrow$ L.R. $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{3 \sqrt{2}}=3 \sqrt{2}$
16. If $y=\sqrt{\frac{2(\tan \alpha+\cot \alpha)}{1+\tan ^{2} \alpha}+\frac{1}{\sin ^{2} \alpha}}$ when $\alpha \in\left(\frac{3 \pi}{4}, \pi\right)$ then find $\frac{d y}{d \alpha}$ at $\alpha=\frac{5 \pi}{6}$
(1) 4
(2) 2
(3) 3
(4) -4

Ans. (1)
Sol. $\quad y=\sqrt{\frac{2 \cos ^{2} \alpha}{\sin \alpha \cos \alpha}+\frac{1}{\sin ^{2} \alpha}}=\sqrt{2 \cot \alpha+\operatorname{cosec}^{2} \alpha}=|1+\cot \alpha|=-1-\cot \alpha$

$$
\frac{d y}{d \alpha}=\operatorname{cosec}^{2} \alpha \Rightarrow\left(\frac{d y}{d \alpha}\right) \text { at } \alpha=\frac{5 \pi}{6} \text { willbe }=4
$$

17. If $A(1,1), B(6,5), C\left(\frac{3}{2}, 2\right)$ are vertices of $\Delta A B C$. A point P is such that area of $\Delta P A B, \Delta P A C, \Delta P B C$ are equal, also $Q\left(\frac{-7}{6}, \frac{-1}{3}\right)$, then length of $P Q$ is
(1) 2
(2) 3
(3) 4
(4) 5

Ans. (4)
Sol. P will be centroid of $\triangle A B C$

$$
P\left(\frac{17}{6}, \frac{8}{3}\right) \quad \Rightarrow \quad P Q=\sqrt{\left(\frac{24}{6}\right)^{2}+\left(\frac{9}{3}\right)}=5
$$

18. $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to
(1) $\sim p$
(2) p
(3) $p \wedge q$
(4) $p \vee q$

Ans. (1)
Sol.

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\sim \mathbf{p}$	$\mathbf{q} \rightarrow \sim \mathbf{p}$	$(\mathbf{p} \rightarrow \mathbf{q}) \wedge(\mathbf{p} \rightarrow \sim \mathbf{q})$
T	T	T	F	F	F
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	T	T	T

Clearly $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to $\sim p$
19. Find greatest value of k for which $49^{\mathrm{k}}+1$ is factor of $1+49+49^{2} \ldots . .(49)^{125}$
(1) 63
(2) 65
(3) 2
(4) 5

Ans. (1)
Sol. $\quad \frac{(49)^{126}-1}{48}=\frac{\left((49)^{63}+1\right)\left(49^{63}-1\right)}{48}$
20. If $f(x)=|2-|x-3||$ is non differentiable in $x \in S$. Then value of $\sum_{x \in S}(f(f(x))$ is

Ans. 3

Sol. $\quad \because f(x)$ is non differentiable at $x=1,3,5$ $\Sigma f(f(x))=f(f(1)+f(f(3))+f(f(5))$

$$
\begin{aligned}
& =1+1+1 \\
& =3
\end{aligned}
$$

21. If system of equations

$$
\begin{aligned}
& 2 x+2 a y+a z=0 \\
& 2 x+3 b y+b z=0 \\
& 2 x+4 c y+c z=0 \text { have non-trivial solution }
\end{aligned}
$$

then
(1) $a+b+c=0$
(2) a, b, c are in A.P.
(3) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
(4) a, b, c in G.P.

Sol. For non-trivial solution
$\left|\begin{array}{lll}1 & 2 a & a \\ 1 & 3 b & b \\ 1 & 4 c & c\end{array}\right|=0$
$(3 b c-4 b c)-(2 a c-4 a c)+(2 a b-3 a b)=0$
$-b c+2 a c-a b=0$
$a b+b c=2 a c$
a, b, c in H.P.
$\Rightarrow \quad \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ in A.P.
22. If sum of 5 consecutive terms of 'an A.P is $25 \&$ product of these terms is 2520 . If one of the terms is $1 / 2$ then the value of greatest term is
(1) $\frac{21}{2}$
(2) 16
(3) 5
(4) 7

Ans. (2)
Sol. Let terms be (माना कि पद) $a-2 d, a-d, a, a+d, a+2 d$.
sum योगफल $=25 \Rightarrow 5 a=25 \Rightarrow a=5$
Product गुणनफल $=2520$

$$
\begin{aligned}
& (5-2 d)(5-d) 5(5+d) \quad(5+2 d)=2520 \\
& \Rightarrow\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504 \\
& \Rightarrow 625-100 d^{2}-25 d^{2}+4 d^{4}=504 \\
& \Rightarrow 4 d^{4}-125 d^{2}+625-504=0 \\
& \Rightarrow 4 d^{4}-125 d^{2}+121=0 \\
& \Rightarrow 4 d^{4}-121 d^{2}-4 d^{2}+121=0 \\
& \Rightarrow\left(d^{2}-1\right)\left(4 d^{2}-121\right)=0 \\
& \Rightarrow d= \pm 1, \quad d= \pm \frac{11}{2} \\
& d= \pm 1, \text { does not give } \frac{-1}{2} \text { as a term }
\end{aligned}
$$

$\therefore \mathrm{d}=\frac{11}{2}$
\therefore Largest term $=5+2 d=5+11=16$
23. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$
\vec{a} lies in plane of $\vec{b} \& \vec{c}$

$$
\vec{b}=\hat{i}+\hat{j} \& \vec{c}=\hat{i}-\hat{j}+4 \hat{k}
$$

of \vec{a} bisectors angle between $\vec{b} \& \vec{c}$, then
(1) $\vec{a} \cdot \hat{k}+2=0$
(2) $\vec{a} \cdot \hat{k}+4=0$
(3) $\vec{a} \cdot \hat{k}-2=0$
(4) $\vec{a} \cdot \hat{k}+5=0$

Ans. (1)
Sol. angle bisector can be $\vec{a}=\vec{a}=\lambda(\hat{b}+\hat{c})$ or $\vec{a}=\mu(\hat{b}-\hat{c})$
$\overrightarrow{\mathrm{a}}=\lambda\left(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}+\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}}}{3 \sqrt{2}}\right)=\frac{\lambda}{3 \sqrt{2}}[3 \hat{i}+3 \hat{j}+\hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}]=\frac{\lambda}{3 \sqrt{2}}[4 \hat{i}+2 \hat{j}+4 \hat{k}]$
Compare with $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$
$\frac{2 \lambda}{3 \sqrt{2}}=2 \Rightarrow \lambda=3 \sqrt{2}$
$\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
Not in option so now consider $\vec{a}=\mu\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}-\frac{\hat{i}-\hat{\mathbf{j}}+4 \hat{k}}{3 \sqrt{2}}\right)$
$\vec{a}=\frac{\mu}{3 \sqrt{2}}(3 \hat{i}+3 \hat{j}-\hat{i}+\hat{j}-4 \hat{k})$
$=\frac{\mu}{3 \sqrt{2}}(2 \hat{i}+4 \hat{j}-4 \hat{k})$
Compare with $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$
$\frac{4 \mu}{3 \sqrt{2}}=2 \Rightarrow \mu=\frac{3 \sqrt{2}}{2}$
$\vec{a}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\overrightarrow{\mathrm{a}} . \hat{\mathrm{k}}+2=0$
$-2+2=0$
24. Given $f(a+b+1-x)=f(x) \forall x \in R$ then the value of $\frac{1}{(a+b)} \int_{a}^{b} x[f(x)+f(x+1)] d x$ is equal to
(1) $\int_{a+1}^{b+1} f(x) d x$
(2) $\int_{a+1}^{b+1} f(x+1) d x$
(3) $\int_{a-1}^{b-1} f(x) d x$
(4*) $\int_{a-1}^{b-1} f(x+1) d x$

Ans. (4)
Sol. $\quad I=\frac{1}{(a+b)} \int_{a}^{b} x[f(x)+f(x+1)] d x$
$x \rightarrow a+b-x$
$I=\frac{1}{(a+b)} \int_{a}^{b}(a+b-x)[f(a+b-x)+f(a+b+1-x)] d x$
$I=\frac{1}{(a+b)} \int_{a}^{b}(a+b-x)[f(x+1)+f(x)] d x$ \qquad
[\because put $\mathrm{x} \rightarrow \mathrm{x}+1$ in given equation]
(1) $+(2)$
$2 I=\int_{a}^{b}[f(x+1)+f(x)] d x$

