JEE MAIN-2020 | DATE : 07-01-2020 (SHIFT-1)| PAPER-1 | MEMORY BASED | PHYSICS

PART : PHYSICS

1. A block of mass m is suspended from a pulley in form of a circular disc of mass m \& radius R. The system is released from rest, find the angular velocity of disc when block has dropped by height h. (there is no slipping between string \& pulley)

(1) $\frac{1}{R} \sqrt{\frac{4 g h}{3}}$
(2) $\frac{1}{R} \sqrt{\frac{2 g h}{3}}$
(3) $R \sqrt{\frac{2 g h}{3}}$
(4) $R \sqrt{\frac{4 g h}{3}}$

Ans. (1)
Sol. $m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
$\mathrm{v}=\omega \mathrm{R}$ (no slipping)
$m g h=\frac{1}{2} m \omega^{2} R^{2}+\frac{1}{2} \frac{m R^{2}}{2} \omega^{2}$
$\mathrm{mgh}=\frac{3}{4} \mathrm{~m} \omega^{2} \mathrm{R}^{2}$
$\omega=\sqrt{\frac{4 g h}{3 R^{2}}}=\frac{1}{R} \sqrt{\frac{4 g h}{3}}$
2. Three point masses $1 \mathrm{~kg}, 1.5 \mathrm{~kg}, 2.5 \mathrm{~kg}$ are placed at the vertices of a triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm as shown in the figure. The location of centre of mass with respect to 1 kg mass is :

(1) 0.6 cm to the right of 1 kg and 2 cm above 1 kg mass
(2) 0.9 cm to the right of 1 kg and 2 cm above 1 kg mass
(3) 0.9 cm to the left of 1 kg and 2 cm above 1 kg mass
(4) 0.9 cm to the right of 1 kg and 1.5 cm above 1 kg mass

Ans. (2)

Sol. Take 1 kg mass at origin

3. In a single slit diffraction set up, second minima is observed at an angle of 60°. The expected position of first minima is
(1) 25°
(2) 20°
(3) 30°
(4) 45°

Ans. (1)
Sol. For $2^{\text {nd }}$ minima
$d \sin \theta=2 \lambda$
$\sin \theta=\frac{\sqrt{3}}{2}$ (given)
$\Rightarrow \quad \frac{\lambda}{\mathrm{d}}=\frac{\sqrt{3}}{4}$
So for $1^{\text {st }}$ minima is
$d \sin \theta=\lambda$
$\sin \theta=\frac{\lambda}{d}=\frac{\sqrt{3}}{4}$ (from equation (i))
$\theta=25.65^{\circ}$ (from sin table)
$\theta \approx 25^{\circ}$
4. There are two infinite plane sheets each having uniform surface charge density $+\sigma \mathrm{C} / \mathrm{m}^{2}$. They are inclined to each other at an angle 30° as shown in the figure. Electric field at any arbitrary point P is:

(1) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{1}{2} \hat{\mathrm{x}}\right]$
(2) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{1}{2} \hat{\mathrm{x}}\right]$
(3) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}+\frac{1}{2} \hat{\mathrm{x}}\right]$
(4) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{y}+\frac{1}{2} \hat{x}\right]$

Ans. (1)

Sol.

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}=\frac{\sigma}{2 \varepsilon_{0}} \cos 60^{\circ}(-\hat{\mathrm{x}})+\left[\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}} \sin 60^{\circ}\right](\hat{y}) \\
& \overrightarrow{\mathrm{E}}=\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{\mathrm{y}}-\frac{1}{2} \hat{\mathrm{x}}\right]
\end{aligned}
$$

5. A parallel plate capacitor with plate area A \& plate separation d is filled with a dielectric material of dielectric constant given by $k=k_{0}(1+\alpha x)$. Calculate capacitance of system: (given $\alpha \mathrm{d} \ll 1$).

(1) $\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\alpha^{2} d^{2}\right)$
(2) $\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\frac{\alpha d}{2}\right)$
(3) $\frac{k_{0} \varepsilon_{0} A}{2 d}(1+\alpha d)$
(4) $\frac{\mathrm{k}_{0} \varepsilon_{0} A}{2 d}\left(1+\frac{\alpha d}{2}\right)$

Ans. (2)

Sol. Capacitance of element $=\frac{\mathrm{k} \varepsilon_{0} \mathrm{~A}}{\mathrm{dx}}$

Capacitance of element, $\mathrm{C}^{\prime}=\frac{\mathrm{k}_{0}(1+\alpha \mathrm{x}) \varepsilon_{0} \mathrm{~A}}{\mathrm{dx}}$
$\sum \frac{1}{\mathrm{C}^{\prime}}=\int_{0}^{d} \frac{d x}{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A}(1+\alpha \mathrm{x})}$
$\frac{1}{\mathrm{C}}=\frac{1}{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A} \alpha} \ln (1+\alpha \mathrm{d})$
Given $\alpha \mathrm{d} \ll 1$
$\frac{1}{C}=\frac{1}{\mathrm{k}_{0} \varepsilon_{0} A \alpha}\left(\alpha d-\frac{\alpha^{2} d^{2}}{2}\right)$
$\frac{1}{C}=\frac{d}{\mathrm{k}_{0} \varepsilon_{0} \mathrm{~A}}\left(1-\frac{\alpha \mathrm{d}}{2}\right)$
$C=\frac{k_{0} \varepsilon_{0} A}{d}\left(1+\frac{\alpha d}{2}\right)$
6. A long solenoid of radius R carries a time dependent current $I=I_{0} t(1-t)$. A ring of radius $2 R$ is placed coaxially near its centre. During the time interval $0 \leq t \leq 1$, the induced current IR and the induced emf V_{R} in the ring vary as:
(1) current will change its direction and its emf will be zero at $t=0.25 \mathrm{sec}$.
(2) current will not change its direction \& emf will be maximum at $t=0.5 \mathrm{sec}$
(3) current will not change direction and emf will be zero at 0.25 sec .
(4) current will change its direction and its emf will be zero at $t=0.5 \mathrm{sec}$.

Ans. (4)
Sol. $\quad \mathrm{I}=\mathrm{I} 0 \mathrm{t}-\mathrm{I}_{0} \mathrm{t}^{2}$
$\phi=\mathrm{BA}$
$\phi=\mu_{0} \mathrm{nIA}$
$V_{R}=-\frac{d \phi}{d t}=-\mu_{0} \mathrm{nAI}_{0}(1-2 \mathrm{t})$
$V_{R}=0$ at $t=\frac{1}{2}$
and $\mathrm{IR}=\frac{\mathrm{V}_{\mathrm{R}}}{\text { Resistance of loop }}$

7. If 10% of intensity is passed from analyser, then, the angle by which analyser should be rotated such that transmitted intensity becomes zero. (Assume no absorption by analyser and polarizer).
(1) 60°
(2) 18.4°
(3) 45°
(4) 71.6°

Ans. (B)
Sol. $\quad I=I_{0} \cos ^{2} \theta$
$\frac{\mathrm{I}_{0}}{10}=\mathrm{I}_{0} \cos ^{2} \theta$
$\cos \theta=\frac{1}{\sqrt{10}}=0.31$
$\theta=71.6^{\circ}$
angle rotated should be $=90^{\circ}-71.6^{\circ}=18.4^{\circ}$
8. Three moles of ideal gas A with $\frac{c_{P}}{c_{V}}=\frac{4}{3}$ is mixed with two moles of another ideal gas B with $\frac{c_{P}}{c_{V}}=\frac{5}{3}$.

The $\frac{C_{P}}{C_{v}}$ of mixture is (Assuming temperature is constant)
(1) 1.5
(2) 1.42
(3) 1.7
(4) 1.3

Ans. (2)

Sol. $\quad \gamma_{\text {mixture }}=\frac{n_{1} c_{P_{1}}+n_{2} c_{P_{2}}}{n_{1} c_{V_{1}}+n_{2} c_{V_{2}}}=\frac{n_{1} \frac{\gamma_{1} R}{\gamma_{1}-1}+n_{2} \frac{\gamma_{2} R}{\gamma_{2}-1}}{\frac{n_{1} R}{\gamma_{1}-1}+\frac{n_{2} R}{\gamma_{2}-1}}$
on rearranging we get,
$\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{\gamma_{\text {mix }}-1}=\frac{\mathrm{n}_{1}}{\gamma_{1}-1}+\frac{\mathrm{n}_{2}}{\gamma_{2}-1}$
$\frac{5}{\gamma_{\text {mix }}-1}=\frac{3}{1 / 3}+\frac{2}{2 / 3}$
$\frac{5}{\gamma_{\text {mix }}-1}=9+3=12$
$\Rightarrow \gamma_{\text {mixure }}=\frac{17}{12}=1+\frac{5}{12}$
$\gamma_{\text {mix }}=1.42$
9. Given magnetic field equation is $B=3 \times 10^{-8} \sin (\omega t+k x+\phi) \hat{j}$
then appropriate equation for electric field (E) will be :
(1) $20 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$
(2) $9 \sin (\omega t+k x+\phi) \hat{k}$
(3) $16 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$
(4) $3 \times 10^{-9} \sin (\omega t+k x+\phi) \hat{k}$

Ans. (2)
Sol. $\frac{E_{0}}{B_{0}}=C$ (speed of light in vacuum)
$\mathrm{E}_{0}=\mathrm{B}_{0} \mathrm{C}=3 \times 10^{-8} \times 3 \times 10^{8}$

$$
=9 \mathrm{~N} / \mathrm{C}
$$

So $E=9 \sin (\omega t+k x+\phi)$
10. There is a LCR circuit, If it is compared with a damped oscillation of mass m oscillating with force constant k and damping coefficient 'b'. Compare the terms of damped oscillation with the devices in LCR circuit.
(1) $\mathrm{L} \rightarrow \mathrm{m}, \mathrm{C} \rightarrow \frac{1}{\mathrm{k}}, \mathrm{R} \rightarrow \mathrm{b}$
(2) $\mathrm{L} \rightarrow \mathrm{m}, \mathrm{C} \rightarrow \mathrm{k}, \mathrm{R} \rightarrow \mathrm{b}$
(3) $\mathrm{L} \rightarrow \mathrm{k}, \mathrm{C} \rightarrow \mathrm{b}, \mathrm{R} \rightarrow \mathrm{m}$
(4) $L \rightarrow \frac{1}{m}, C \rightarrow \frac{1}{k}, R \rightarrow \frac{1}{b}$

Ans. (1)
Sol. In damped oscillation
$\mathrm{ma}+\mathrm{bv}+\mathrm{kx}=0$

C
$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0$

In the circuit
$-i R-L \frac{d i}{d t}-\frac{q}{c}=0$
$L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{c} \cdot q=0$
Comparing equation (i) and (ii)
$m=L, b=R, k=\frac{1}{c}$
11. A lift can hold 2000kg, friction is 4000 N and power provided is 60 HP . ($1 \mathrm{HP}=746 \mathrm{~W}$) Find the maximum speed with which lift can move up.
(1) $1.9 \mathrm{~m} / \mathrm{s}$
(2) $1.7 \mathrm{~m} / \mathrm{s}$
(3) $2 \mathrm{~m} / \mathrm{s}$
(4) $1.5 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad 4000 \times \mathrm{V}+\mathrm{mg} \times \mathrm{V}=\mathrm{P}$
$\frac{60 \times 746}{4000+20000}=V$
$\mathrm{V}=1.86 \mathrm{~m} / \mathrm{s} . \approx 1.9 \mathrm{~m} / \mathrm{s}$.
12. A H-atom in ground state has time period $\mathrm{T}=1.6 \times 10^{-16} \mathrm{sec}$. find the frequency of electron in first excited state
(1) 7.8×10^{14}
(2) 7.8×10^{16}
(3) 3.7×10^{14}
(4) 3.7×10^{16}

Ans. (1)
Sol. $T \propto \frac{r}{v} \propto \frac{n^{2}}{z} \times \frac{n}{z} \propto \frac{n^{3}}{z^{2}}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{n}_{1}^{3}}{\mathrm{n}_{2}^{3}}=\frac{1}{8}$
$\mathrm{T}_{2}=8 \mathrm{~T}_{1}$

$$
=8 \times 1.6 \times 10^{-16}=12.8 \times 10^{-16}
$$

$f_{2}=\frac{1}{12.8 \times 10^{-16}} \approx 7.8 \times 10^{14}$
13. Magnification of compound microscope is 375 . Length of tube is 150 mm . Given that focal length of objective lens is 5 mm , then value of focal length of eyepiece is:
(1) 2 mm
(2) 22 mm
(3) 12 mm
(4) 33 mm

Ans. (2)

Sol. Case-I

If final image is at least distance of clear vision
M.P. $=\frac{L}{f_{0}}\left(1+\frac{D}{f_{e}}\right)$
$375=\frac{150}{5}\left[1+\frac{25}{\mathrm{f}_{\mathrm{e}}}\right]$
$\frac{375}{30}=1+\frac{25}{f_{e}}$
$\frac{345}{30}=\frac{25}{f_{e}}$
$\mathrm{f}_{\mathrm{e}}=\frac{750}{345}=2.17 \mathrm{~cm}$
$\mathrm{f}_{\mathrm{e}} \approx 22 \mathrm{~mm}$
Case-II
If final image is at infinity
M.P. $=\frac{L}{f_{0}}\left(\frac{D}{f_{e}}\right)=375$
$\mathrm{f}_{\mathrm{e}}=20 \mathrm{~mm}$
14. 1 litre of a gas at STP is expanded adiabatically to 3 litre. Find work done by the gas. Given $\gamma=1.40$ and $3^{1.4}=4.65$
(1) 100.8 J
(2) 90.5 J
(3) 45 J
(4) 18 J

Ans. (2)
Sol. $P_{1}=1 \mathrm{~atm}, \mathrm{~T}_{1}=273 \mathrm{~K}$

$$
\begin{aligned}
& P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
& P_{2}=P_{1}\left[\frac{V_{1}}{V_{2}}\right]^{\gamma} \\
& =1 \mathrm{~atm}\left(\frac{1}{3}\right)^{1.4}
\end{aligned}
$$

now work done $=\frac{P_{1} V_{1}-P_{2} V_{2}}{\gamma-1}=88.7 \mathrm{~J}$
Most appropriate ans is 90.5 J
15. A string of length 60 cm , mass 6 gm and area of cross section $1 \mathrm{~mm}^{2}$ and velocity of wave $90 \mathrm{~m} / \mathrm{s}$. Given young's modulus is $\mathrm{Y}=1.6 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. Find extension in string
(1) 0.3 mm
(2) 0.2 mm
(3) 0.1 mm
(4) 0.4 mm

Ans. (1)
Sol. $\quad v=\sqrt{\frac{T}{\mu}}$
$\mathrm{T}=\mu \mathrm{v}^{2}$
$\frac{\mu \mathrm{v}^{2}}{\mathrm{~A}}=\mathrm{Y} \frac{\Delta \ell}{\ell}$
$\Delta \ell=\frac{\mu \mathrm{v}^{2} \ell}{\mathrm{AY}}$
after substituting valu of $\mu, \mathrm{V}, \ell, \mathrm{A}$ and Y we get
$\Delta \ell=0.3 \mathrm{~mm}$
16. Which of the following gate is reversible
(1)

(2)

(4)

Ans. (1)
Sol. A logic gate is reversible if we can recover input data from the output eg. NOT gate
17. A thin uniform rod of mass M and length L. Find the radius of gyration for rotation about an axis passing through a point at a distance of $\frac{L}{4}$ from centre and perpendicular to rod.
(1) $\sqrt{\frac{7}{48}} \mathrm{~L}$
(2) $\sqrt{\frac{5}{48}} \mathrm{~L}$
(3) $\sqrt{\frac{7}{24}} \mathrm{~L}$
(4) $\sqrt{\frac{19}{24}} \mathrm{~L}$

Ans. (1)
Sol.

$\frac{M L^{2}}{12}+M\left(\frac{L}{4}\right)^{2}=M K^{2}$
$\frac{\mathrm{L}^{2}}{12}+\frac{\mathrm{L}^{2}}{16}=\mathrm{K}^{2}$
$K=\sqrt{\frac{7}{48}} \mathrm{~L}$
18. A satellite of mass ' M ' is projected radially from surface of earth with speed ' u '. When is reaches a height equal to radius of earth, it ejects a rocket of mass $\frac{M}{10}$ and it itself starts orbiting the earth in circular path of radius $2 R$, find the kinetic energy of rocket.
(1) $5 \mathrm{M}\left(u^{2}-\frac{119 \mathrm{GM}_{e}}{200 R}\right)$
(2) $5 M\left(u^{2}-\frac{113 G M_{e}}{200 R}\right)$
(3) $\frac{M}{20}\left(u^{2}-\frac{119 G M_{e}}{100 R}\right)$
(4) $\frac{M}{20}\left(u^{2}-\frac{113 G M_{e}}{200 R}\right)$

Ans. (1)
Sol. $\frac{-G M_{e} M}{R}+\frac{1}{2} M u^{2}=\frac{-G M_{e} M}{2 R}+\frac{1}{2} M v^{2}$

$v=\sqrt{u^{2}-\frac{{G M_{e}}^{R}}{R}}$

$\mathrm{V}_{\mathrm{T}} \rightarrow$ Transverse velocity of rocket
$V_{R} \rightarrow$ Radial velocity of rocket
$\frac{M}{10} V_{T}=\frac{9 M}{10} \sqrt{\frac{G M_{e}}{2 R}}$
$\frac{M}{10} V_{r}=M \sqrt{u^{2}-\frac{G M_{e}}{R}}$
Kinetic energy $=\frac{1}{2} \frac{M}{10}\left(V_{T}^{2}+V_{r}^{2}\right)=\frac{M}{20}\left(81 \frac{G M_{e}}{2 R}+100 u^{2}-100 \frac{G M_{e}}{R}\right)$
$=\frac{M}{20}\left(100 u^{2}-\frac{119 G M_{e}}{2 R}\right)$
$=5 M\left(u^{2}-\frac{119 G M_{e}}{200 R}\right)$
19. The current ' i ' in the given circuit is

(1) 0.2 A
(2) 0.3 A
(3) 0.5 A
(4) 0.25 A

Ans. (1)

Sol.

$\mathrm{I}=\frac{1}{2.5}=0.4 \mathrm{~A}$
$i=\frac{I}{2}=0.2 \mathrm{~A}$
20. A current carrying circular loop is placed in an infinite plane if ϕ_{i} is the magnetic flux through the inner region and ϕ_{\circ} is magnitude of magnetic flux through the outer region, then
(1) $\phi_{i}>\phi_{\circ}$
(2) $\phi_{i}<\phi_{\circ}$
(3) $\phi i=-\phi_{\circ}$
(4) $\phi_{i}=\phi_{\circ}$

Ans. (3)
Sol. As magnetic field lines always form a closed loop, hence every magnetic field line creating magnetic flux in the inner region must be passing through the outer region. Since flux in two regions are in opposite direction,
$\therefore \quad \phi_{i}=-\phi_{0}$

Numerical Value Type ()
 This section contains 5 Numerical value type questions.

21. Consider a loop $A B C D E F A$. With coordinates $A(0,0,0), B(5,0,0), C(5,5,0), D(0,5,0) E(0,5,5)$ and $F(0,0,5)$. Find magnetic flux through loop due to magnetic field $\vec{B}=3 \hat{i}+4 \hat{k}$
Ans. 175
Sol. $\quad \phi=\vec{B} \cdot \vec{A}=(3 \hat{i}+4 \hat{k}) \cdot(25 \hat{i}+25 \hat{k})$

$\phi=(3 \times 25)+(4 \times 25)=175$ weber
22. A carnot engine operates between two reservoirs of temperature 900 K and 300 K . The engine performs 1200 J of work per cycle. The heat energy delivered by the engine to the low temperature reservoir in a cycle is:
Ans. 600
Sol. $\quad \eta=\frac{W}{Q_{h}}=1-\frac{300}{900}=\frac{2}{3}$
$Q_{h}=\frac{3}{2} W=1800 \mathrm{~J}$
$Q_{L}=Q_{h}-W=600 \mathrm{~J}$
23. A non-isotropic solid metal cube has coefficients of linear expansion as $5 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ along the x-axis and $5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ along the y and the z -axis. If coefficient of volume expansion of the solid is $\mathrm{C} \times 10^{-6} /{ }^{\circ} \mathrm{C}$ then the value of C is
Ans. 60
Sol. $V=2 \alpha_{2}+\alpha_{1}$
$=10 \times 10^{-6}+5 \times 10^{-5}$
$=60 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
24. A particle is released at point A. Find Kinetic energy at point P Given $m=1 \mathrm{~kg}$ and all surfaces are frictionless

Ans. 10
Sol. $K E=P E_{1}-P E_{2}=\mathrm{mgh}_{1}-\mathrm{mgh}_{2}$
$=1 \times 10 \times 2-1 \times 10 \times 1=10 \mathrm{~J}$
25. On a photosensitive metal of area $1 \mathrm{~cm}^{2}$ and work function 2 eV , light of intensity $6.4 \times 10^{-5} \mathrm{~W} / \mathrm{cm}^{2}$ in wavelength 310 nm fall normally. If 1 out of every 10^{3} photons are successful, then number of photoelectrons emitted in one second is 10^{x}. Find x
Ans. 11
Sol. Energy of photon. $E=\frac{1240}{310}=4 \mathrm{eV}>2 \mathrm{eV}$ (so photoelectric effect will take place)
$=4 \times 1.6 \times 10^{-19}=6.4 \times 10^{-19}$ Joule
No. of photons falling per second
$=\frac{6.4 \times 10^{-5} \times 1}{6.4 \times 10^{-19}}=10^{14}$
No. of photoelectron per second
$=\frac{10^{14}}{10^{3}}=10^{11}$

