PART : CHEMISTRY

SECTION - 1 : (Maximum Marks : 80)

Straight Objective Type
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. Correct bond energy order of following is-
(1) $\mathrm{C}-\mathrm{Cl}>\mathrm{C}-\mathrm{Br}>\mathrm{C}-\mathrm{I}>\mathrm{C}-\mathrm{F}$
(2) $\mathrm{C}-\mathrm{F}<\mathrm{C}-\mathrm{Cl}<\mathrm{C}-\mathrm{Br}<\mathrm{C}-\mathrm{I}$
(3) $\mathrm{C}-\mathrm{F}>\mathrm{C}-\mathrm{Cl}>\mathrm{C}-\mathrm{Br}>\mathrm{C}-\mathrm{I}$
(4) $\mathrm{C}-\mathrm{I}<\mathrm{C}-\mathrm{Br}<\mathrm{C}-\mathrm{F}<\mathrm{C}-\mathrm{Cl}$

Ans. (3)
Sol. Bond energy $\propto \frac{1}{\text { Bond length }}$
2. Determine Bohr's radius of Li^{2+} ion for $\mathrm{n}=2$. Given (Bohr's radius of H -atom $=\mathrm{a}_{0}$)
(1) $\frac{3 a_{0}}{4}$
(2) $\frac{4 a_{0}}{3}$
(3) $\frac{a_{0}}{3}$
(4) $\frac{16 a_{0}}{9}$

Ans. (2)
Sol. $r=\frac{a_{0} n^{2}}{Z}$
3. Given the following reaction sequence

$A \& B$ are respectively
(1) $\mathrm{Mg}, \mathrm{Mg}_{3} \mathrm{~N}_{2}$
(2) $\mathrm{Na} \mathrm{Na}_{3} \mathrm{~N}$
(3) $\mathrm{Mg} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
(4) $\mathrm{Na} \mathrm{NaNO}_{3}$

Ans. (1)

Sol. $\quad 3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3}$
(B)
4. Correct order of magnetic moment (spin only) for the following complexes
(a) $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(c) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(d) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(1) $a=b=c<d$
(2) $a<b<c<d$
(3) $a>b>c>d$
(4) $a=b>c>d$

Ans. (1)
Sol. $\quad\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
[$\left.\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{Pd}^{2+}=4 \mathrm{~d}^{8}$
$M=0$
$\mathrm{Ni}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}(\mathrm{SFL}) \quad \mathrm{M}=0$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\mathrm{Ni}^{2+}=3 \mathrm{~d}^{8}(\mathrm{SFL})$
$\mathrm{M}=0$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Ni}^{2+}=3 \mathrm{~d}^{8}(\mathrm{WFL})$
$t_{2 g}^{2,2,2}, e_{g}^{1,1}$ So, unpaired electron is 2
5. Determine total number of neutrons in three isotopes of hydrogen.
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (3)
Sol.

Number of neutrons \quad| ${ }_{1}^{1} \mathrm{H}$ |
| :--- |
| $0+1+2=3$ |

6.

Compare E_{a} (activation energy) for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .
(1) $\mathrm{E}_{b}>\mathrm{E}_{\mathrm{c}}>\mathrm{E}_{\mathrm{d}}>\mathrm{E}_{\mathrm{a}}$
(2) $\mathrm{E}_{\mathrm{a}}>\mathrm{E}_{\mathrm{d}}>\mathrm{E}_{\mathrm{c}}>\mathrm{E}_{b}$
(3) $E_{c}>E_{b}>E_{a}>E_{d}$
(4) $\mathrm{E}_{\mathrm{d}}>\mathrm{E}_{\mathrm{a}}>\mathrm{E}_{\mathrm{b}}>\mathrm{E}_{\mathrm{c}}$

Ans. (1)
Sol. $\log k=\log A-\frac{E_{a}}{2.303 R T}$
slope $\quad=-\frac{E_{a}}{2.303 R} \Rightarrow E_{b}>E_{c}>E_{d}>E_{a}$
7. Which of the following exhibit both Frenkel \& Schottky defect?
(1) AgBr
(2) KCl
(3) CsCl
(4) ZnS

Ans. (1)
Sol. Only AgBr can exhibit both Schottky and Frenkel defect.
8. Given:

Basicity of B is:
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (1)
Sol. $\mathrm{P}_{4}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+\mathrm{NaH}_{2} \mathrm{PO}_{2}$

Basicity = 1
9. Which reaction does not occurs in the blast furnace in the metallurgy of Fe
(a) $\mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{CaSiO}_{3}$
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}$
(c) $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$
(d) $\mathrm{FeO} \xrightarrow{\Delta} \mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2}$
(1) $a \& b$
(2) $a, b \& c$
(3) c \& d
(4) a, b, c, d

Ans. (3)
Sol. Theory based
10. Correct order of radius of elements is:
C, O, F, Cl, Br
(1) $\mathrm{Br}>\mathrm{Cl}>\mathrm{C}>\mathrm{O}>\mathrm{F}$
(2) $\mathrm{Br}<\mathrm{Cl}<\mathrm{C}<\mathrm{O}<\mathrm{F}$
(3) $\mathrm{Cl}<\mathrm{C}<\mathrm{O}<\mathrm{F}<\mathrm{Br}$
(4) $\mathrm{C}>\mathrm{F}>\mathrm{O}>\mathrm{Br}>\mathrm{Cl}$

Ans. (1)

Sol.

11. Amongs the following which will show geometrical isomerism.

Ans. (1)
(a) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+}$
(b) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]$
(c) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$
(d) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]$
(1) b, d
(2) a, b
(3) $a, b \& c$
(4) a, b, c \& d

Sol. Ma4bc can show 2 G.I.
$\mathrm{Ma}_{2} \mathrm{~b}_{2}$ can show 2 G.I.
(Square planar)
12. Assertion: pH of water increases on increasing temperature.

Reason: $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$is an exothermic process.
(1) Both assertion and reason are correct and reason is correct explanation of assertion.
(2) Both assertion and reason are correct and reason is not correct explanation of assertion.
(3) Assertion is true \& reason is false.
(4) Both assertion and reason are incorrect.

Ans. (4)
Sol. Theory Based
13. Assertion: It has been found that for hydrogenation reaction the catalytic activity increases from group5 to group-11 metals with maximum activity being shown by groups 7-9 elements of the periodic table.
Reason: For 7-9 group elements adsorption rate is maximum.
(1) Both assertion and reason are correct and reason is correct explanation of assertion.
(2) Both assertion and reason are correct and reason is not correct explanation of assertion.
(3) Assertion is true \& reason is false.
(4) Both are incorrect

Ans. (1)
Sol. Theory Based
14. The major product of the following reactions is

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

 (Aromatic)
15. Find the final major product of the following reactions-

Ans. (1)
Sol.

16. There are two compounds A and B of molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3}$. A has higher boiling point than B. What are the possible structures of A and B ?
(1)

(2)

(3)

(4)

Ans. (2)
Sol. In (A), extensive inter-molecular H-bonding is possible while in (B) there is no Inter-molecular Hbonding.
17. Kjeldahl method cannot be used for :
(1)

(2)

(3) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}$
(4)

Ans. (1)
Sol. Kjeldahl method is not applicable to nitro or diazo groups present in the ring, as nitrogen atom can't be converted to ammonium sulfate under the reaction conditions.
18. A compound X that adds 2 hydrogen molecules on hydrogenation. The compound X also gives 3 -oxohexanedioic acid on oxidative ozonolysis. The compound ' X ' is:
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

19. Formation of Bakelite follows :
(1) Electrophilic substitution followed by condensation.
(2) Nucleophilic addition followed by dehydration.
(3) Electrophilic addition followed by dehydration.
(4) Hydration followed by condensation.

Ans. (1)
Sol. Formation of Bakelite follows electrophilic substitution reaction of phenol with formaldehyde followed by condensation.

20. Products formed by hydrolysis of maltose are
(1) α-D-Glucose, α-D-Glucose
(2) α-D-Glucose, β-D-Glucose
(3) α-D-Galactose, β-D-Glucose
(4) β-D-Galactose, α-D-Glucose

Ans. (1)
Sol. Maltose on hydrolysis gives 2 moles of α-D-glucose.

SECTION - 2 : (Maximum Marks : 20)

* This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
* If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
> Full Marks : +4 If ONLY the correct option is chosen.
$>$ Zero Marks: \mathbf{O} In all other cases

21. Temperature of 4 moles of gas increases from 300 K to 500 K find ' C_{v} ' if $\Delta \mathrm{U}=5000 \mathrm{~J}$.

Ans. 06.25
Sol. $\Delta U=n C_{v} \Delta T$
$5000=4 \times C_{v}(500-300)$
$\mathrm{C}_{\mathrm{v}}=6.25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
22. Given : $\mathrm{E}_{\mathrm{Sn}^{2+} / \mathrm{Sn}}^{0}=-0.14 \mathrm{~V} ; \mathrm{E}_{\mathrm{Pb}^{2+} / \mathrm{Pb}}^{0}=-0.13 \mathrm{~V}$

Determine $\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}$ at equilibrium
For cell reaction $\mathrm{Sn}\left|\mathrm{Sn}^{2+} \| \mathrm{Pb}^{2+}\right| \mathrm{Pb}$
take $\frac{2.303 R T}{F}=0.06 \mathrm{~V}$

Ans. 02.15
Sol. At Equilibrium state. $\mathrm{E}_{\text {cell }}=0$; E^{o} cell $=0.01 \mathrm{~V}$
$\mathrm{Sn}+\mathrm{Pb}^{2+} \longrightarrow \mathrm{Sn}^{2+}+\mathrm{Pb}$
$0=0.01-\frac{0.06}{2} \log \left\{\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\}$
$0.01=\frac{0.06}{2} \log \left\{\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\}$
$\frac{1}{3}=\log \left\{\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right\} \Rightarrow \frac{\left[\mathrm{Sb}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}=10^{1 / 3}=2.1544$
23. Given following reaction,
$\mathrm{NaClO}_{3}+\mathrm{Fe} \rightarrow \mathrm{O}_{2}+\mathrm{FeO}+\mathrm{NaCl}$
In the above reaction 492 L of O_{2} is obtained at $1 \mathrm{~atm} \& 300 \mathrm{~K}$ temperature.
Determine mass of NaClO_{3} required (in kg).

($\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
Ans. 02.13
Sol. mol of $\mathrm{NaClO}_{3}=\mathrm{mol}$ of O_{2}
mol of $\mathrm{O}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \times 492}{0.082 \times 300}=20 \mathrm{~mol}$
mass of $\mathrm{NaClO}_{3}=20 \times 106.5=2130 \mathrm{~g}$
24. Complex [ML5] can exhibit trigonal bipyramidal and square pyramidal geometry. Determine total number of 180°, 90° \& 120° L-M-L bond angles.

Ans. 20.00

Sol.

$$
\angle 120^{\circ}=3 ; \angle 90^{\circ}=6 ; \angle 180^{\circ}=1 \Rightarrow \text { Total }=10
$$

$$
\angle 90^{\circ}=8 ; \angle 180^{\circ}=2 \Rightarrow \text { Total }=10
$$

25. How many atoms lie in the same plane in the major product (C) ?

(Where A is the alkyne of lowest molecular mass)

Ans. 13.00

Sol.

Number of atoms in one plane $=13$

