

JEE (Main & Advanced) | NEET | AIIMS | KVPY | NTSE | OLYMPIAD | Class VII to XII

JEE Main (Phase-II) 2020

Memory Based Questions & Solutions

SUBJECT

CHEMISTRY

Date: 02 September, 2020 (Shift-2)

Time: 3 PM to 6 PM

HAZRATGANJ

9A, Opp. St. Francis College, Shahnajaf Road, Hazratganj, Lucknow -Call: 0522-4242040, 7518804005

INDIRA NAGAR

D-3221, Sector D Near Munshipulia, Lucknow

GOMTI NAGAR

CP-15, 16, II Floor, SS Tower, Near Sahara Hospital. Viraj Khand-4, Lucknow

ALIGANJ

A-1/4, II Floor, Above Bank of Baroda, Sector-A, Kapoorthala, Lucknow -Call: 7518804003

- 1. Shapes of XeO₃F₂ and XeF₅ will be respectively
 - (1) Trigonal bipyramidal and pentagonal planar.
 - (2) Octahedral and pentagonal bipyramidal
 - (3) Octahedral and square pyramidal
 - (4) See-saw and square pyramidal.

Ans: (1)

Sol. (i) XeO₃F₂ St. No. = 5

so hybridisation is = sp^3d

and structure is trigonal bipyramidal

(ii) XeF_ St. No. = (5 + 2) = 7

so hybridisation is $= sp^3d^3$

and structure is pentagonal planar.

- 2. Which complex will not show isomesism.
 - $(1) [Pt(NH_3),Cl_3]$
- (3) [Ni(NH₂)₂Cl₂]
- (2) [Ni(en)₃]²⁺ (4) [Ni(NH₃)₄(H₂O)₂]²⁺

Ans: (3)

Sol: [Pt(NH₃)₂Cl₂] : Square planar so geometrical isomerism is possible

[Ni(en)₃]²⁺: Octahedral so optical isomerism is possible

[Ni(NH₃)₂Cl₂]: Tetrahedral and no isomerism is possible

 $[Ni(NH_3)_4(H_2O)_2]^{+2}$: Octahedral and geometrical isomerism is possible

- 3. Which of the following can be manufactured from cast iron?
 - (1) Wrought iron and pig Iron

(2) Wrought iron and pig iron

(3) Wrought iron and steel

(4) Pig iron and steel

Ans: (3)

- **Sol.** Iron obtained from Blast furnace is called as pig iron and cast iron is made by adding scrap iron inpig iron. Wrought iron is obtained by oxidising impurities of cast iron and steel is obtained from wrought iron.
- 4. A compound with molecular formula $C_9H_{10}O(1)$ react with HI and produce two compounds B and C. B gives yellow ppt with AgNO3 and C show positive indoform test after tautomerisation. Identify the structure of compound A.

$$(1)$$
 CH₂-O-CH=CH₂

Ans. (3)

Sol.
$$CH_{2} - O - CH = CH_{2} \xrightarrow{HI} CH_{2} - I + CH_{2} = CH - OH (B)$$

$$(C_{9}H_{10}O)$$

$$CH CH - O$$

5. Major product of the following reaction is?

$$H_3C$$
 $Conc.HNO_3$
 $Conc.H_2SO_4$
 NO_2

Ans. (2)

Sol. This is electrophilic substitution reaction which product is determine by electronic effect of OH/CH₂/NO₂ directing effect is according to +M > H.C. > -Mso nitration will occur on para position w.r.t. -OH group

6. (I)
$$\longrightarrow$$
 Br + aq.NaOH \longrightarrow OH + NaBr Rate = K [\longrightarrow Br]

(II)
$$\longrightarrow$$
 Br + C₂H₅OH/OH⁻ \longrightarrow Rate = [\longrightarrow Br] [OH⁻]

Correct statement regarding the above reactions, I and II.

- (1) Rate of both reaction become double if concentration of OH is doubled.
- (2) Rate of both reaction do not depend upon concentration of OH.
- (3) Rate of reaction I remain unchanged if concentration of OH is increased.
- (4) Rate of reaction II remain unchanged if concentration of OH is increased.

Ans. (3)

Sol. First reaction is SN¹ in which rate does not depend on conc. of nucleophile. Second reaction is E2 reaction in which rate depends on conc. of base.

7. The correct order of acidic strenght is.

$$\begin{array}{c|c} NO_2 & C \equiv CH \ (d) \\ \hline \\ HO \ (a) & COOH \ (b) \end{array}$$

- (1) a > b > c > d
- (2) b > c > a > d
- (3) b > a > c > d
- (4) c > b > a > d

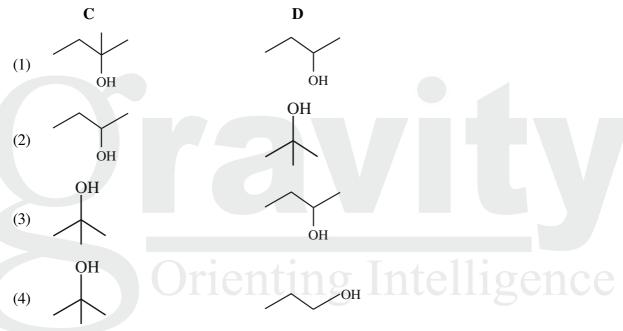
Ans. (2)

Sol. Stability of conjugated base ∞ acidic strength

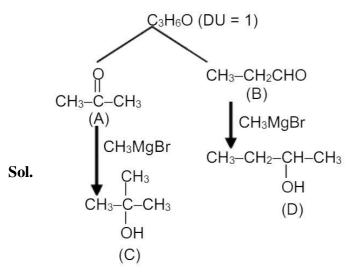
$$(3) \qquad \qquad (4) \qquad \qquad (4)$$

Ans. (2)

Sol;
$$E2$$
 F


3-Bromo – 2 – Fluoro pentane

(More stable)


Two compounds A & B having molecular formula C_3H_6O when treated with CH_3MgBr gives C & D 9. respectively. Identify C & D using following information.

CAN Test +ve test +ve test Lucas test Gives turbidity instantaneously Gives turbidity in 5 min

Iodoforn test +ve test +ve test

Ans. (3)

Iodoform Test -ve

Lucas Test after 5-10 minute immediate

Enthalpy of combustion of enthanol is - 327 Kcal/mol at constant pressure and 27° then calculate heat produced (in Kcal) when combustion is carried out at constant volume at same temperature

Ans. 327.6

Sol. Heat released at constant volume = $q_v = \Delta V$

$$\Delta H = \Delta U + \Delta n_g R T$$

$$\Delta hg = 2 - 3 = -1$$

$$\Delta U = \Delta H - \Delta n_{g} R T$$

$$= -327 \times 1000 - (-1) \times 2 \times 300$$

$$\Delta U = -327600 \text{ cal/mol} = -327.6 \text{ Kcal/mol}$$

11. Surcrose
$$\xrightarrow{\text{Hydrolysis}} A + B \xrightarrow{\text{Seliwanoff}} A + B$$

Which colour is obtained after above reaction?

- (1) Red
- (2) Violet
- (3) Blue
- (4) Black

Ans. (1)

Sol. Seliwanoff sreagent \rightarrow [Resorcinol + Conc. HCl]

Use of Seliwanoff reagent is to distinguish aldoses and ketoses. Ketoses show red colour with Seliwanoff Reagnet.

12. For the reaction

$$2A + B \rightarrow C$$

 $2A + B \rightarrow C$ Following experimental data are collected.

Exp.No	$A\left[\frac{Mole}{lit}\right]$	$B\bigg[\frac{Mole}{lit}\bigg]$	Rate[mole / Lit sec]
1	0.1	0.1	6×10^{-3}
2	0.2	0.2	1.2×10^{-2}
3	0.1	0.2	2.4×10^{-2}
4	X	0.2	7.2×10^{-2}
5	0.3	Y	2.88×10^{-1}

Find X and Y

- (1) 0.2, 0.3
- (2) 0.3, 0.4
- (3) 0.4, 0.3
- (4) 0.3, 0.2

Ans. (2)

Sol. Rate =
$$k[A]^a [B]^b$$

from Exp (1) & (2)
$$a = 1$$

$$\mathbf{c} = \mathbf{c} \cdot \mathbf{c} \cdot$$

from Exap (1) & (2)
$$b = 2$$

from Exp 3 & 4
$$\Rightarrow$$
 $3 = \left(\frac{x}{0.1}\right)^1 \text{ so } x = 0.3$

$$(4)^2 = \left(\frac{y}{0.1}\right)^2$$
 so $y = 0.4$

- If you spill chemical toilet cleaner on your hand what will be the used for primary treatment
 - (3) aq. NH₂solution
 - (1) aq. NaOH solution (2) aq. NaHCO₃ solution (4) aq. Na₂CO₃ solution
- Ans. (4)
- Sol. Fact
- **14.** Which statement is correct when adsorption of gas take place on metal surface?
 - (1) $\wedge H$ becomes less negative with progress of reaction.
 - (2) With progress of reaction the strength of residual forces increases.
 - (3) NH_3 is adsorbed more than N_2
 - (4) Equillibrium concentration of adsorbate increases with increase in tempreture.
 - (1) 1, 3

- (2) 1, 2
- (3) 2, 4
- (4) 2, 3

Ans. (1)

- **Sol.** (1) When gas is adsorbed on metal surface. ΔH become less negative with progress of reaction.
 - (3) gas with greater value of cirtical temperature (Tc) absorbed more. At Tc (NH₃) > Tc(N₂) So NH₃ is absorbed more than N₂
- Three element of 3rd period x,y,z such that oxide of x is acidic, y is amphoteric and z is basic, the order of atomic no. of three elements is:
 - (1) x > y > z

- (2) y > x > z (3) z > x > y

Ans. (1)

Sol. On moving left to right in a period

Acidic character of oxides is increase

3rd period element oxides.

$$\underbrace{Na_2O \text{ , } MgO}_{Basic} \quad \underbrace{Al_2O_3}_{Amphoteric} \quad \underbrace{SiO_2 \quad P_2O_5 \quad Cl_2O_7}_{Acidic}$$

Acidic strength ↑; Atomic number of Central Atom ↑

- so Z have minimum atomic No
- & X have maxima atomic No.

So correct order is X > Y > Z

- Element A and B do not form solid bicarbonate but reacts with N₂ to give nitrides. Which of the following can be A and B?
 - (1) Li, Mg

- (2) Rb, Na
- (3) Ca, Cs
- (4) Ca, Na

Ans. (1)

Sol. Li and Mg do not form solid bicarbonate. But react with N₂ to give nitrides.

$$6\operatorname{Li} + \operatorname{N}_2 \xrightarrow{\Delta} 2\operatorname{Li}_3 \operatorname{N}$$

$$3Mg + N_2 \xrightarrow{\Delta} Mg_3N_2$$


- (1) trigonal bipyramidal
- (2) pyramidal

(3) square planer

(4) trigonal planar

Ans. (1)

Sol. $SF_4 \Rightarrow Steric No. = 5$ so hybridisation is $sp^3 d$.

Structure is trigonal bipyramidal but shape is "See Saw"

18. Match the following, proportionally with distance according to their interaction energy.

Species Interact	ioı
------------------	-----

interaction Energy Proportionality

(i) ion – ion
$$(1) \propto$$

(ii) Dipole – dipole (2)
$$\propto \frac{1}{r^2}$$

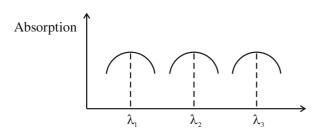
(iii) London dispersion
$$(3) \propto \frac{1}{r^3}$$

$$(4) \propto \frac{1}{r^6}$$

Which of the following is correct match?

$$(1)(i)-(1);(ii)-(3);(iii)-(4)$$

$$(2)(i)-(1);(ii)-(3);(iii)-(1)$$


$$(3)(i)-(2);(ii)-(3);(iii)-(4)$$

$$(4)(i)-(3);(ii)-(2);(iii)-(1)$$

Ans. (1)

Sol. (i) ion-ion interaction energy is inversely proportional to the distance between ions $\left(\frac{1}{r}\right)$.

- (ii) dipole-dipole interaction energy is inversely proportional to the third power of $r\left(\frac{1}{r^3}\right)$
- (iii) The ineraction energhy of London force is inversely proportional to sixth power of sdistance between two interaction particles $\left(\frac{1}{r^6}\right)$

Sample Compound

(1) A
$$[Fe(NH_3)_6]^{n+}$$

(2) B
$$[FeF_6]^{-6+n}$$

(3) C
$$[Fe(NCS)_6]^{-6+n}$$

Which of the following is correct match?

(1)
$$A - \lambda_1$$
; $B - \lambda_2$; $C - \lambda_3$

(2)
$$A - \lambda_2$$
; $B - \lambda_3$; $C - \lambda_1$

(3)
$$A - \lambda_1$$
; $B - \lambda_3$; $C - \lambda_2$ (4) None of these

Ans. (3)

Sol. Stronger the ligand greater is splitting of d orbitals and smaller will be wave length of light absorbed.

The splitting power of ligands is $NH_2 > NC\overline{S} > F^-$

So order of wavelength of light absorbed is $\lambda_{NH_3} < \lambda_{NC\bar{S}} < \lambda_{F}$

20. If a mango shrinks when kept in concentrated salt solution, then which of the following process take place?

(1) diffusion

(2) dialysis

(3) osmsis

(4) reverse osmosis\

Ans. (3)

Sol. When mango kept in concentrate salt solution then solvent (water) flow from mango to concentrate solution that's why mango shrinks this is called. "Osmosis"

21. For cell reaction

$$2Cu^{^{+}} \rightleftarrows Cu + Cu^{^{2+}}$$

Given (i)
$$Cu^+ + e \rightarrow Cu \quad E^\circ = 0.52V$$

(ii)
$$Cu^{2+} + e \rightarrow Cu^{+1}$$
 $E^{0} = 0.16V$

$$(\frac{RT}{F} = 0.025)$$

Ans. 144

Sol.
$$E_{cell}^0 = E_{Cu^+/Cu}^0 - E_{Cu^{2+}/Cu^{+1}}^{\circ}$$

= 0.52-0.16
= 0.36 V

$$E_{cell}^{0} = \frac{RT}{nF} InK_{eq}$$

$$0.36 = \frac{0.025}{1} \ln k$$

$$\ln k = 14.4 \\
= 144 \times 10^{-1}$$

Ans. 144

22. In a saturated acyclic compound the mass ratio of C:H is 4:1 and C:O is 3:4. Find the no. of moles of O₂ required to react with 2 moles of given compound to give CO₂ and water.

Ans. 5

Sol. Mass ratio of C: H is
$$4:1 \Rightarrow 12:3$$

& C : O is
$$3:4 \Rightarrow 12:16$$

Mass mole mole ratio

O 16 1 1 Empirical formula \Rightarrow CH₃O

as compound is satured acyclic so molecular formula is C₂H₆O₂

$$C_2H_6O_2 + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(g)$$

2 mole 5 mole

4 mole

6 mole

so required moles of $O_2 = 5$ mole

23. A metal having work function = 4.41×10^{-19} J is subjected to a light having wavelenght 300 nm, then maximum kinetic energy of the emmited photoelectron is......× 10^{21} J.

(Given h = 6.63×10^{-34} J/s & C = 3×10^{8} m/sec)

Ans. 222.00

$$E = E_0 + (kE)_{max}$$

$$\frac{hC}{\lambda} = 4.41 \times 10^{-19} + (kE)_{max}$$

$$\frac{6.63\times10^{-34}\times3\times108}{300\times10^{-9}} - 4.41\times10^{-19} = (kE)_{max}$$

So,
$$(kE)_{max} = 6.63 \times 10^{-19} - 4.41 \times 10^{-19}$$

= 2.22×10^{-19}
= $222 \times 10^{-21} \text{ J}$

Let the oxidation state of the transition element of compound K₂Cr₂O₇, KMnO₄ and K₂FeO₄ be X,Y and Z respectively, calculate X+Y+Z.

Ans. 19.00

Oxidation state of transition element Sol. Compound

- (i) K₂Cr₂O₂ X = +6KMnO₄ Y = +7(ii)
- Z = +6(ii) K,FeO₄

so (X + Y + Z) = 19

25. No of subshells having n = 4 & m = -2 are:

Ans. 2

Sol. For n = 4 possible values of $\ell = 0$, 1,2 3 only $\ell = 2$ & $\ell = 3$ can have m = -2. So possible sushells are 2.

JEE Main - 2020

Best Result in U.P.

Aditya Pandey Percentile 99.936

City Topper Application No. 200310320565 DOB - 23-12-2002

65 Students Above 99 Percentile

145 Students Above 98 Percentile

208 Students Above 97 Percentile

SCHOOL INTEGRATED PROGRAM (SIP)

Tradition of Gravity Continues, Once Again Historical Result,

100% Students Cracked

JEE Main (Based on Last Yr Cut off)

2020

80 Out of 80 **Cracked JEE Main**

We had three Batches

of 55, 15 and 10.

Many Top Ranks are from these Batches

in **JEE Main**

79 Out of 80 50 Out of 79 JEE Adv.

Pruthvi Raj (99.39)

Debdut Saini (99.38)

Ritik uma (99.13)

(99 28)

Aryansh Tripathi

Abhay (99.01)

2018

83 Out of 85 62 Out of 83 **JEE Main** JEE Adv.

2017

80 Out of 85 63 Out of 80 JEE Adv. **JEE Main**

2016

in **JEE Main**

39 Out of 40 31 Out of 39 JEE Adv.

Selections Engineering 2019

194 AIR (General)

337 AIR (General)

494 AIR (General)

497 AIR (General)

Shubh Sahu

Shlok Nemani

50 out of 79 Cracked JEE Advanced from SIP (School Integrated Program)

4 Ranks under 500 (General Category) | 2 Ranks under 10 (Reserved Category)

126 Selections in JEE Advanced | 61 Students above 99 Percentile in JEE Main 2019

AIR - 3*

AIR - 4*

AIR - **68***

AIR - 150*

ravity

Orienting Intelligence

AIR - 177*

AIR - 809
(General EWS)

AIR - 1378 (General)

AIR - 2237 (General)

AIR - **2382**

(General)

AIR - 2388 (General)

AIR - 2656 (General)

AIR - 2659 (General)

AIR - 2709 (General)

AIR - 2787 (General)

AIR - 2881 (General)

AIR - 3167 (General)

AIR - 3600 (General)

Abhisht Bose

